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Abstract

Large-scale structural optimization problems are often difficult to solve with reason-

able efficiency and accuracy. Such problems are often characterized by constraint functions

which are not explicitly defined. Constraint and gradient functions are usually expensive to

evaluate. An optimization approach which uses the NLPQL sequential quadratic program-

ming algorithm of Schittkowski, integrated with the Automated Structural Optimization

System (ASTROS) is tested. The traditional solution approach involves the formulation

and solution of an explicitly defined approximate problem during each iteration. This ap-

proach is replaced by a simpler approach in which the approximate problem is eliminated.

In the simpler approach, each finite element analysis is foliwed by one iteration of the opti-

mizer. To compensate for the cost of additional analyses incurred by the elimination of the

approximate problem, a much more restrictive active set strategy is used. The approach

is applied to three large structures problems, including one with constraints from multi-

ple disciplines. Results and algorithm performance comparisons are given. Although not

much computational efficiency is gained, the alternative approach gives accurate solutions.

The largest of the three problems, which had 1527 design variables and 6124 constraints

was solved with ASTROS for the first time using a direct method. The resulting design

represents the lowest weight feasible design recorded to date.
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APPLICATION OF SEQUENTIAL QUADRATIC

PROGRAMMING TO LARGE-SCALE

STRUCTURAL DESIGN PROBLEMS

I. Introduction

1.1 Structural Optimization

Engineering optimization problems are characterized by the optimization of some

design criterion subject to various design constraints. If the problem involves optimizing

the design of a structure (i.e., a system consisting of spars, trusses, beams, etc.), then it is

often referred to as a structural optimization problem.

In most structural design problems, the goal is to find the design vector x E R"

which minimizes the value of an objective function f (typically weight of the structure),

such that certain behavioral and performance requirements or constraints are met [7:79].

This is expressed mathematically in terms of the following general nonlinear programming

(NLP) model:

(NLPl) min f(x)
subject to

gj(x) = Gj(x) - > 0, j=1,2,...,m

x1 5 x _< X,

where m is the number of constraints, n is the number of design variables, 0 is a vec-

tor of constraint limits, and xi, x, are design variable lower and upper bound vectors,

respectively. It is assumed that the functions f and g,(j = 1,..., m) are twice continu-

ously differentiable, and that design points exist which satisfy the Karush-Kuhn-Tucker

(KKT) necessary conditions for optimality. Also, since constraint functions in structural

optimization problems are often highly nonlinear, an optimal solution can never be guar-

anteed to be global.
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Structural optimization problems can be quite large - on the order of hundreds of

design variables and thousands of constraints - and, therefore, difficult to solve. Large

problems are often found in the design of aerospace structures, such as airframes and

satellites. One computer program which is used in the design of aerospace structures is

ASTROS (Automated Structural Optimization System) [20]. ASTROS is unique in that

it "combines mathematical optimization algorithms with traditional structural analysis

disciplines such as static forces, normal modes, static aeroelasticity, and dynamic aeroe-

lasticity (flutter), all in a finite element context, to perform automated preliminary design

of an aircraft structure" [20:ij. This integration of many different engineering disciplines is

often called an integrated or multidisciplinary environment. Figure 1.1 shows the complex

interrelationships which exist among the different disciplines within ASTROS.

Model Loads Forces Corrections

cotrl Nonnr Model Displaemerds
•mmModes [M] [K] [] (Ch

Eigenvarie Analysis
12ess Analysis

A/C

Analysis Search Drection
lootivce Gradients Stop Size

Constraint Gradients Optimality Condtion
L 4 Urnmtady Performance Eval

Aero Model

Figure 1.1 ASTROS Interdisciplinary Design
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This thesis addresses a modification to the ASTROS software, that of applying a

sequential quadratic programming (SQP) algorithm to the structural analysis process in

an effort to increase the efficiency of ASTROS in solving very large problems. For this

research, airframes are the specific type of structure considered (although other structures

are discussed). Airframe design may require additional constraints and variables so that

the aircraft can fly and perform its mission; even so, problems and techniques discussed in

this document are easily generalized to many other structures.

Most aircraft structures consist of special types of components such as spars, ribs,

stiffeners, skins, and so on. Descriptions of these items can be found in many mechanical

engineering design textbooks (e.g., see [39]). Examples of typical structures are shown as

"wire models" in Figures 1.2 and 1.3. The following design aspects are assumed known:

"* Geometry of the structure

"* Structural concept (includes numbers of spars, ribs, stiffeners, etc.)

"* Materials used to build the structure

"* Flight Conditions (includes maneuver requirements, such as takeoff, pullout, roll,

and landing, as well as inertial and aerodynamic loads).

Figure 1.2 Example of a structure: 10-bar truss
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Figure 1.3 Example of a structure: ACOSS Satellite

Design Variables. The vector of design variables, z, may represent any of the follow-

ing aspects of the structure:

"* Thickness of skin, spars, and ribs

"* Areas of spar caps, rib caps, and posts

"* Composite fiber orientation.

Constraints. In order to function properly, a structure must function within certain

design limitations. Aircraft structures are typically constrained by:

* Strength

* Stiffness (deflections)

* Natural frequency

* Flutter speed

* Divergence speed

1-4



e Lift-curve slope

* Control surface effectiveness.

For a description of these concepts, see [1] or [39].

Optimization Problem. A more specific representation of the structural optimization

problem (NLP1) can now be given:

minf(x)

subject to

o, < ej allowable stresses

uj < iij allowable deflections

w3j > Cj minimum fundamental frequency

V1 2! V1  flutter speed

Vdi> •V•. divergence speed

d11> C lift-curve slope
da

Xl • X < X.

Structural optimization problems differ from traditional mathematical programming prob-

lems in that the constraint functions may not be explicitly defined [17]. At any new design

point, finite element analysis (FEA) is used to construct a new set of constraint func-

tions having the same form but different parameters as previous designs. Also, for most

structural optimization approaches, sensitivity analysis is also required at each new design

point. This requires calculation of gradients for each constraint. The computational cost

of evaluating the constraints and gradients at each new design can be great if the problem

is large. Therefore, for a solution technique to be most efficient, it must use as few function

and gradient evaluations and FEA iterations as possible.

1.2 Approach

To improve computational efficiency, this research focuses on improvements in two

areas:

1. An optimizer with better convergence properties, and

1-5



2. An efficient active set strategy.

An improved optimizer can speed convergence, thus reducing the number of iterations.

An active set strategy can reduce the problem dimension and, therefore, the number of

gradient calculations. Each is briefly discussed below.

1.2.1 Improving the Optimizer. One class of algorithms which has received a great

deal of attention for its robustness and superior convergence properties is known as se-

quential quadratic programming (SQP). These methods are based on solving a linearly

constrained quadratic subproblem (based on Taylor series approximations of the objective

and constraint functions) during each iteration, the solution of which yields the search

direction to the next design point. Many implementations have been shown to converge

globally (from any initial design point) and superlinearly in a sufficiently small neighbor-

hood of the optimum [2:803-8041. For these reasons, a SQP approach was used.

1.2.2 Active Set Strategies. An active set strategy is typically implemented as part

of an optimization algorithm to make large problems more manageable. At any given

feasible design point, each constraint can be either binding or nonbinding (i.e., for each j,

either gj = 0 or gj < 0, respectively). The set of binding constraints, J, is referred to as

the active set. If gj < 0, then its Lagrange multiplier, denoted vj, vanishes. This means

that the gradient of each constraint not in the active set need not be calculated. Active

set strategies exploit this advantage by only holding active a handful of constraints during

each iteration, and eventually converging to the optimal active set (i.e., the actual active

set at the optimal design point). These strategies are used within algorithms to reduce

problem size at each iteration, thereby reducing computational cost.

For small problems, the savings is negligible, but large optimization problems cannot

be solved efficiently without an active set strategy [401. For example, a problem with 20

variables and 1000 constraints (assume no inconsistencies), would have no more than 20

active constraints at any time. Without an active set strategy, 20000 (20 x 1000) derivatives

per iteration would need to be computed. An active set strategy would only require, at

1-6



most, 400 (20 x 20) per iteration, a savings of 98 percent (I - 400/20000). While this

example is somewhat extreme, it shows the potential savings.

1.3 Purpose of Research

The purpose of this research is to adapt an SQP method with active set strategy

that, when combined with FEA in an integrated environment, can improve algorithm

performance for large problems as compared to currently used methods. More specifically,

an SQP algorithm is combined in a loop with ASTROS in a new way in an effort to solve

larger problems more efficiently. The approach is applied to three structures problems and

performance is compared to that of ASTROS in terms of computer processing (CPU) time

and number of iterations required.

1.4 Overview

The next chapter describes pertinent background information found in the literature.

Chapter III describes the SQP algorithm used and how it was integrated within ASTROS

to solve structures problems. Chapter IV gives comparative results of this implementation

against the method currently used in ASTROS applied to the structures problems described

in Appendix A. Finally, Chapter V gives conclusions and recommendations for areas of

further research.
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II. Literature Review

Methods for solving nonlinear structural optimization problems fall into one of two

classes: optimality criteria (OC) and mathematical programming (MP) methods. MP

methods generate a sequence of design points in the primal space converging to an optimal,

feasible solution. OC methods make use of the dual problem and Kuhn-Tucker necessary

conditions and iteratively converge to a design point that satisfies them.

OC methods can often solve large-scale problems with better computational effi-

ciency, mainly because the dual problem has much smaller dimension; the dual variables

or Lagrange multipliers are zero for inactive primal constraints. However, MP methods

are more robust and reliable in terms of the classes and types of problems they can solve.

One popular MP method that has shown promise, SQP, has more favorable convergence

properties than other MP methods [2:803-804].

2.1 Optimality Criteria Methods

OC methods, also referred to as indirect methods [17:82), are often applied to large-

scale problems. These methods have two main components [7:80]:

1. A set of necessary conditions which hold at optimality, and

2. An iterative redesign scheme in which successive designs converge to the set of nec-

essary conditions.

To obtain the set of necessary conditions, the Lagrangian of (NLPl) is formed:

L(--) = fix) + E: v gj W),
j=1

where v = (vl,.. .. v) denotes the vector of Lagrange multipliers.

Minimization of L yields the optimality conditions,

8L _Of(x) mOL=Ofzcg,+ E= -vi-z 0 , i=1,.n (2.1)

gj 0, j -l,...,m (2.2)
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vjgj = 0, j = 1 . ,m(2.3)

vi > 0, j = 1,...,m (2.4)

ZX < x < x.. (2.5)

Equation (2.1) reduces to

m

S eijvj =1 i=1,.,n, (2.6)

j=i

where

-o= 1 ., (2.7)

Special modifications are made if the denominator of Equation (2.7) is zero.

Finally, since the relationship of Equation (2.6) holds at any Kuhn-Tucker point, an

iterative scheme can be used to converge to a solution. Many such schemes have been

developed. One common approach, attributed to Khot, Berke, and Venkayya [16] is to

multiply both sides of Equation (2.6) by x? and then take the square root resulting in the

recurrence formula

(k+1)=Xk () (k).i (2.8)

where vk = (Vk),.. , vmk)) are estimates of v. Note that as xk = (xz~k,..., x$,)) approaches

a Kuhn-Tucker point, the iterates defined by Equation (2.8) get closer and closer together

due to the term inside the parentheses approaching unity [44]. A more thorough treatment

of OC methods, including some specific implementations of various recurrence formulas

for xk and vk can be found in [15:319-328]. When Venkayya generalizes this method for

multiple types of constraints, he uses a compound scaling algorithm to track violated,

active, and inactive constraints ([6], [44]).

While OC methods have been successfully used to solve large problems ([6], [7]), they

have many limitations. One main drawback is that they typically work well for specific

types of constraints, but have difficulty computing Lagrange multipliers in problems with

multiple constraints [7:79]. They also become increasingly inefficient as the number of

active constraints approaches the number of design variables. This is because OC methods
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reduce the dimension by exploiting the dual problem; if the dual problem is nearly as large,

little efficiency can be gained. OC methods typically converge quickly in the initial stages,

but the step-size becomes more difficult to determine as the design approaches optimal

[7:79]. In addition, convergence to the optimum is also not guaranteed [17:83]. Venkayya

suggests that a hybrid method of OC for the first few iterations, and then an MP method

for accuracy, could yield even better results [7:79].

2.2 Mathematical Programming Methods

Mathematical programming (or direct) methods are based on the following iterative

scheme:

Xk+i = Xk + aks, k = 0,1,...,

where k is the iteration number, xk is the design vector at the kth iteration (k = 0 is the

initial design), sk is a search direction vector, and ak is the step size in the search direction.

Computation of st and ak varies among the many different MP methods. Discussion of

specific MP methods, such as Frank-Wolfe, feasible directions, generalized reduced gra-

dient, and gradient projection methods, can be found in most standard optimization or

nonlinear programming textbooks (e.g., see [12] or [28]).

MP methods are generally more robust than OC methods. Many are globally con-

vergent (i.e., they converge from any initial starting design point) and, unlike the OC

methods, their convergence does not depend on the types of constraint functions used.

However, many MP methods lack the efficiency and convergence rate necessary to be use-

ful for solving large-scale problems.

2.3 Active Constraint Set Strategies

One approach for improving the efficiency of MP algorithms is to incorporate an

active constraint set strategy. Indeed, large-scale problems cannot be solved without them

([40], [41]). This is because methods without such strategies must evaluate all constraints at

every iteration; for very large problems this becomes intractable. Active set strategies deal

only with a subset of the constraints at any time. This reduces the number of constraint
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gradient evaluations performed at each iteration, thus greatly diminishing computational

cost.

2.3.1 General Active Set Algorithm. An active set strategy generally consists of

the following steps (adapted from [23:354]):

1. Input initial design point and working constraint set.

2. Perform termination test (including test of KKT conditions). If point is not optimal,

either continue with same working set or go to 7.

3. Compute a feasible search vector sk.

4. Compute a step length G& along sk, such that f(Zx) + OkSk < f(Zk). If aO violates

a constraint, continue; otherwise, go to 6.

5. Add a violated constraint to the working set and reduce ak to the maximum possible

value that keeps feasibility.

6. Set Zk+1 = Zk + Gksk.

7. Change the working set (if necessary) by deleting a constraint, update all quantities

(including k = k + 1), and go to step 2.

While the implementation of an active set algorithm can be very flexible, the key decision

is determining how constraints are added and deleted from the working set (other details

axe typically defined by the type of algorithm using the strategy).

2.3.2 Add and Drop Rules. The constraints to be added or deleted axe determined

by specific add and drop rules, and it is these rules that make each strategy different

[4:4301. Some strategies add more than one constraint at a time, while others add or drop

only when necessary to continue toward optimality [9:221].

Lenard classifies active set strategies by defining two add and two drop rules as

follows (adapted from [18]):

1. AWN (Add-when-necessary): Constraint is added to the working set only when

necessary for feasibility.
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2. AWP (Add-when-possible): Constraint is added whenever the line search is blocked

by it.

3. DWN (Drop-when-necessary): Constraint is dropped only when necessary for con-

tinued improvement in the objective function.

4. DWP (Drop-when-possible): Constraint is dropped whenever reasonable improve-

ment can be gained.

Rules 2 and 3 yield the most constrained strategy, while rules 1 and 4 give the least con-

strained strategy [18:86]. The least constrained methods usually perform faster and more

efficiently since fewer gradients are evaluated at each iteration, but they tend to have

problems with constraints cycling in and out of the working set ([9:2211, [18:821, [22:270]).

Clearly, the AWP and DWP rules suggest the possibility of adding or dropping several

constraints at a time.

Although, in theory, these rules define the differences between active set strategies,

algorithm performance depends chiefly on the drop rule [9:229-230]. In Lenard's study

of strategies used for linearly constrained nonlinear programs (NLPs), the AWN-DWN

method was discarded because the results were too close to the AWP-DWN strategy [18:86].

Das, Cliff, and Kelley considered three strategies in their research, all of which used an

AWP approach [9:230]. Panier asserts that active set strategies used for linearly constrained

NLPs differ only in the choice of descent direction and the constraint drop rule [22:270].

2.3.3 Cycling. The use of active set strategies which drop more than one constraint

at a time can often induce a phenomenon called cycling or zigzagging. This occurs when

constraints "cycle" in and out of the working set. Examples of this can be found in

[8]. Without cycling, an algorithm is usually much faster if it can drop many constraints

simultaneously; however, cycling slows the progress of the algorithm, thereby negating the

benefits gained by the less restrictive strategy. Several approaches exist to alleviate this

problem. For example, Das, Cliff, and Kelley use Zoutendijk's rule (see [47]), which keeps

all previously dropped constraints in the working set until the algorithm converges to a

stationary point [9].
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2.3.4 Ezamples of Stralegies. Four of the most common active set strategies are

briefly described in this section.

Sargent and Murtagh use an AWP-DWP "worst-violator" strategy in which multiple

constraints are dropped whenever a constraint is added or the optimum is obtained with

respect to the current working set. When either occurs, the constraint with the most

negative multiplier (called the worst violator) is deleted and the multipliers are recomputed.

This is repeated until the working set contains only constraints with nonnegative multipliers

[31].

Fletcher uses an AWP-DWN (most constrained) strategy in which the worst violator

is dropped only when no more improvement can be made with the current working set.

Only one constraint is dropped at a time [11]. This method is also employed in the gradient

projection methods described in [28].

Rosen's strategy is also an AWP-DWN strategy that drops constraints one at a time.

However, when a constraint is added, Rosen chooses as the constraint to be dropped the

violator (constraint with a negative multiplier) which would produce the largest additional

decrease of the objective function (provided the decrease is greater than the decrease

without dropping) ([29], [30]).

The E-active method is one which appears in the literature extensively (e.g., see [2],

[271, or [331). In this method, a constraint is considered active whenever it is infeasible or

within E of its limit. That is, the active set J is defined at the point x by

J = {j E 1: g9(x) E or vj >0},

where I = {1,..., m} and E is some small user-specified tolerance value. In this scheme,

the entire active set is determined anew prior to each iteration.

Structural design problems are frequently solved using an c-active method because

the constraint functions are implicit and can change between iterations. The natural

consequence of this is that constraints held in the active set during one iteration may be

inactive or infeasible during the next without any attempt to add or drop. Therefore,

recomputing the active set before every iteration becomes the only reasonable strategy
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for structuial optimization problems. An advantage of this method is that it avoids the

problem of cycling [22].

2.4 Sequential Quadratic Programming

Among the large class of MP techniques (also referred to as direct methods), SQP

methods have become very popular. They converge to a solution by solving a sequence

of linearly constrained quadratic programming subproblems to determine each successive

search direction. This problem is described mathematically ([7:79], [23:365-367]) as

min sTVf + ½8 TW(X, V)S

subject to

g (.T) + sTVg, (Z) <_ O, j=1,.,,

where v is a vector of Lagrange multipliers, and W is a positive definite matrix approxi-

mating the Hessian of the Lagrangian function, V2L, at the current design point. If V2L

is positive definite at s°, then s° is a local minimum [37:189].

Although many different SQP algorithms exist, they generally consist of the following

steps (adapted from [23:369]):

General SQP Algorithm

1. Initialize (including starting point).

2. Solve the quadratic subproblem to determine the search vector, 8 k.

3. Minimize a merit function along 8k to determine the step size, ak.

4. Set Xk+1 = Xk + akSk.

5. Perform the termination test; if criteria not met, go to step 2.

A merit function is used in place of the objective function to account for infeasible points

along the line of search. It is constructed to reward optimality and penalize infeasibility

simultaneously [23:367]. Examples of merit functions can be found in Powell [25], Schit-

tkowski ([33],[34],[35]), or Reklaitis, Ravindran, and Ragsdell [28:218-241].
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SQP methods have two advantages over many other MP methods. The first is global

convergence. For most implementations, SQP methods have been proven to converge from

any inital starting design [2:803-804]. The second feature is local superlinear convergence.

In a neighborhood of the optimal solution zx, the equation

IIXk+I - <1 • 1xk - '01 (2.9)

holds, where ,Yk E R converges to zero [32:11-12]. A higher convergence rate means that

fewer iterations are required to arrive at a solution. This is especially vital when the cost

of testing a design point is computationally expensive.

2.5 SQP Methods with Active Set Strategies

One area that has drawn significant attention in recent years is the implementa-

tion of active set strategies with SQP. Comparative studies show these algorithms to per-

form favorably on more moderately-sized problems ([3], [7], [35], [40], [41]). With an effi-

cient strategy, an SQP method should be able to handle much larger problems, including

very large structures problems. Two prominent algorithms are the PLBA (Pshenichny-

Lim-Belegundu-Arora) algorithm [2], based on Pshenichy's original work [27] and Schit-

tkowski's NLPQL algorithm ([33], [34], [35]), based on earlier work done by Wilson [45],

Han ([13],[141), and Powell ([24], [25]). Each of these is briefly described in this section.

2.5.1 PBLA Algorithm. Pshenichny was the first to use SQP with an active set

strategy [27]. Arora and two of his students, Lim and Belegundu, have improved it in two

key ways. The first improvement is the use of second-order information. Pshenichny, uses

W = I, where I is the identity matrix. In the PBLA algorithm, W is a positive definite

approximation to V2L. This accelerates the convergence of the algorithm [3:1588].

The second improvement is a change of a descent function parameter. To determine

the step size at each iteration, Pshenichny minimizes a descent function of the form 0(x) =

f(x) + rV(x), where r is a scalar and V is a penalty function which measures infeasibility

of x. The PBLA algorithm uses a different condition on r (necessary for proof of global
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convergence of the algorithm) that alleviates a small step size problem brought on by large

values of r which often occur with Pshenichny's algorithm [3:15881.

2.5.2 NLPQL Algorithm. Han's SQP algorithm (based on the ideas of Wilson [45])

is based on a nondifferentiable exact penalty function ([13],[14]). Powell improved Han's

method with a better method for updating W at each iteration. In the NLPQL algorithm,

Schittkowski replaces the exact penalty function of Han and Powell with a differentiable

augmented Lagrangian function [33:85-88]. Numerical results have shown that NLPQL is

more efficient than the algorithms of Han and Powell in solving a variety of problems with

up to 100 variables [35].

2.6 Comparative Studies

2.6.1 Structural Optimization Algorithms. Several relevant studies comparing al-

gorithms for structural optimization appear in the literature. Perhaps the most compre-

hensive study to date is that of Schittkowski, Zillober, and Zotemantel. They compare the

performance of eleven algorithms within the MBB-LAGRANGE (see [46]) structural opti-

mization system on 79 test problems having up to 144 design variables and 1020 constraints

[32]. Belegundu and Arora compare a variety of MP methods on structural design prob-

lems, including some moderately large problems. Both theoretical and numerical aspects

are considered [3]. Thanedar, et al. discuss differences between various SQP algorithms

and compare their performance using 17 structural design problems having up to 96 de-

sign variables and 1051 constraints; however, NLPQL is not included in the study [40].

Schittkowski compares computational performance of his algorithm to other MP codes on

smaller problems, but against only one other SQP method (Powell's - see [24]), which

does not use an active set strategy [35]. Canfield, Grandhi, and Venkayya compare the

performance of several MP algorithms, along with an OC method, on moderately sized

problems and large problems with up to 100 design variables in the ASTROS environ-

ment; however, once again, NLPQL was not tested [7]. In a comparison which included

larger problems (200 to 1527 design variables and 722 to 6124 constraints), Canfield and

Venkayya compare a generalized OC method to Vanderplaats' ADS algorithm within AS-
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TROS. Unfortunately, the MP method ran out of memory before solving the largest of

these problems [6]. Testing of some important algorithmic characteristics has also been

accomplished, both for PLBA [41] and NLPQL [33]. Tseng and Arora, in particular, study

how performance changes as specific parameters within the PLBA algorithm are altered

[41]. However, to date, comparative studies on large-scale structural problems with hun-

dreds of variables are scarce.

2.6.2 Active Set Strategies. Current literature on active set strategies is focused

primarily on linearly-constrained quadratic programming (QP) (even NLP studies use pri-

marily QPs). However, most studies are generally applicable to SQP, since the subproblem

is a QP.

There are three particularly relevant studies of active set strategies. Lenard published

the first specific comparative study on active set strategies for nonlinear problems. Her

results show that, for the projection method she used, the least constrained strategies were

superior for all but one of the test problems used. For one 30 variable problem, a 40 to 80

percent savings in computer time is observed [18].

Das, Cliff, and Kelley compare the strategies of Sargent, Fletcher, and Rosen to a

proposed strategy. The proposed method is based on establishing rules for when more than

one constraint can be safely dropped without cycling occurring. (Theoretical development

is limited to the case where there are three or fewer active constraints.) Their results

show that for a few simple quadratic problems, the least constrained strategies generally

outperforms the most constrained [9].

Dax studied active set strategies used on linear least squares problems constrained

only by simple variable bounds. In this case, the results show that dropping one constraint

at a time is more efficient than dropping many [101.

2.7 Summary

A search of the literature has revealed that efficiently solving large (thousands of

design variables and constraints) structural design problems is extremely difficult. OC

methods can only be used effectively for certain specific classes of problems and do not
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always converge to a solution. To date, the more robust MP methods have not been as

successful because they are computationally inefficient; however, they possess the best

convergence properties (i.e., they generally converge for any initial starting design point

and do not depend on any significant constraint characteristics). A more efficient MP

algorithm could provide structural engineers a way to routinely solve very large problems

without sacrificing robustness.

Of the MP techniques, SQP algorithms have the fastest convergence rates, and con-

verge from any initial starting design. Studies show that algorithms, such as the well-known

PBLA and NLPQL codes, which use SQP with an active set strategy, generally perform

better on small and moderately-sized stuctures problems than other MP methods. Thus,

the main thrust of this thesis becomes the application of an SQP algorithm with active set

strategy to very large structures problems in an effort to improve algorithm performance.

2-11



Ill. Approach

3.1 Overview

This chapter describes the details of the research conducted. Schittkowski's SQP

code, NLPQL, was chosen over Arora's PBLA code because of its special "reverse com-

munication" logic which makes it much easier to apply universally to finite element codes

(this is discussed further in Section 3.6.1). A driver program was needed to interact with

the ASTROS system. In this chapter, the current and proposed optimization loops are

contrasted, the NLPQL algorithm is described in greater detail, and an outline is given of

how NLPQL and ASTROS were used in tandem.

3.2 ASTROS Optimization Loop

ASTROS (Automated Structural Optimization System) is a computer program used

in multidisciplinary design of aerospace structures [20]. It combines nonlinear optimization

techniques with finite element analysis (FEA) to arrive at an optimal, or at least a much

improved, preliminary design. Figure 3.1 represents a traditional design approach which

is used in ASTROS and many other structural optimization codes.

In this procedure, an initial FEA is performed, and constraints are deleted (or flagged

as inactive) according to specific criteria chosen by the user. These criteria keep as active

the most infeasible and binding (or close to binding) constraints while deleting those which

are easily satisfied. More details are given in 3.6.2, as well as in the ASTROS user's and

programmer's manuals ([20], [21]). ASTROS then calculates gradients for the "active" con-

straints anv ý ses approzimation concepts (see [38]) to construct an approximate problem

formulated v y linearizing the constraints in the reciprocal design space. The optimizer is

then called to solve the simplified problem using Vanderplaats' ADS algorithm ([42], [43]).

The key point is that the approximate problem is optimized at very little cost, because, it

has fewer constraints and the functions are explicitly defined. After the approximate prob-

lem is solved, an FEA is performed to see if the full design meets the convergence criteria

for the entire structure. Generally, fewer FEAs are required because all of the optimiza-

tion iterations are done with the approximate problem at low cost. For most structural
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Figure 3.1 Typical Optimization Procedure

problems, this is very efficient because FEA is computationally expensive, particularly in

problems which have constraints from several disciplines, such as aeroelasticity and flutter
analysis. However, for large problems, soving the approximate problem can also become

very expensive because the active set must contain a fairly generous number of constraints
for which gradients are expensive to evaluate.

3.3 Alternative Optimization Loop

Figure 3.2 shows an alternative approach in which there is no approximate problem

and an entire FEA is performed during each iteration of the optimization procedure. While

this approach may seem less efficient due to a greater number of FEAs required, in practice,

there could be significant savings for very large problems if a tight active set strategy is

used in conjunction with a fast optimizer. This would potentially yield fewer gradient cal-

culations per iteration, and the tradeoff could decrease computer CPU time. In ASTROS

or any method similar to Figure 3.1, the constraint deletion procedure must necessarily be

generous in flagging active constraints because optimization of an approximate problem

may otherwise yield an infeasible next design. In some instances, the constraint deletion

routine flags nearly all the constraints as active, making the approximate problem large.
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Figure 3.2 Alternative Optimization Procedure

34 Design of Investigation

NLPQL was implemented as the optimizer to solve structures problems using the

approach described in Figure 3.2. This was done in a two-phase approach using ASTROS
to conduct the structural analysis (FEA) and sensitivity analysis portions of the loop. The

code was verified by solving the classic ten-bar truss problem (for a description, see [7] or

[38]).

In testing the ASTROS-NLPQL implementation, there were two objectives. The first

goal was to obtain an accurate solution. The second was to compare algorithm performance
of the method against the traditional approach.

The ASTROS-NLPQL approach was applied to three structures problems provided

by the Flight Dynamics Directorate of Wright Aeronautical Labportries. The test prob-

lems chosen were:

1. 200 member plane truss (Tr200),

2. Intermediate complexity wing (mCW), and

3. High-altitude long endurance aircraft (HALE).
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The Tr200 problem, which has 200 design variables and 2500 constraints, is a classic large

problem with known solutions. The ICW problem, which has 350 design variables and 750

constraints, was chosen because it was the largest available problem with constraints from

multiple disciplines. The HALE problem, with 1527 design variables and 6124 constraints,

was the largest problem available. It has been solved, but only by OC methods [6:1041].

More detailed descriptions of these problems are given in Appendix A. Comparisons against

ASTROS solutions were made, where possible, with respect to computer CPU time and

number of iterations required.

3.5 The NLPQL Algorithm

In Chapter 2, a general SQP algorithm framework was presented. The second and

third steps of the algorithm, namely solving the quadratic subproblem and determining

the step size, typically vary among the different SQP approaches. NLPQL is a unique and

very efficient implementation of SQP. The details of this algorithm are now presented.

3.5.1 The Quadratic Subproblem. Before explaining the details of the subproblem,

it is necessary to redefine the original optimization problem (NLP1), as

(NLP2) min (x)

subject to

g,(X) =0, j =,...,m,

g(x) >0, = me + 1,...,m

Xl X, < xu.

Linearization of the constraints and quadratic approximation of the Lagrangian give the

QP subproblem whose solution yields the next search direction sk:

min 8TVf+1.STWS

subject to

gJ(Xk) + sTVgj(Xk) = 0, j-1,..., me, (3.1)

gJ(Xk) + STVgj(Xk)_0, j=m,,+1,...,m

X1-- Xk • S S Xu - Xk,
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where Zh = (zXk),..., z$k)), and W is updated during each iteration using a quasi-Newton

method. Schittkowski uses BFGS updating [32:16], which, under relatively weak condi-

tions, preserves the symmetric positive definiteness of W provided it is initially chosen

symmetric positive definite [19:193-194]. This is easily satisfied by choosing W = I as the

initial estimate.

Schittkowski provides two improvements which make the algorithm more efficient.

The first is the addition of an c-active set strategy which reduces the number of unnecessary

gradient calculations. The set of constraints is partitioned into the active set J and its

complement K, defined respectively by

Jk =-{1,...,m}u{jjm <j _m,gj(z-k) <_or vj(k) > 0},

Kk = {1,...,m}l n {j J J},

where vk = (vl M t... , VmM)) is the vector of (approximate) Lagrange multipliers, obtained

iteratively as explained in the next section (initially, vo = 0). As a second improvement,

an additional variable 6 is added to the subproblem in Equation (3.1) to alleviate possible

inconsistent subproblems (constraint qualification does not hold) when the original prob-

lem (NLP2) has a solution. The QP subproblem given in Equation (3.1) is rewritten (after

both modifications) as

min STVf + IsTWs + "Pk 62

subject to

(1 -6) 3gj(Xk) + sTVg,(Xk) { }O, jE Jk (3.2)

gj(xk) + STVg,(Xk(j)) >_ 0, j E KA

xI - rk _S < _Z, - Zk

0<6<1,

where the indices k(j) correspond to gradients computed during previous iterations (i.e.,

previous design variable values). The penalty parameter pk is added to reduce the influ-

ence of 6 on the solution of Equation (3.2) [35:489-491]. If the subproblem is consistent,

6 vanishes, giving back the original subproblem. By "perturbing" an inconsistent system
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slightly, the constraint qualification will hold for some value of 6, where 0 < 6 < 1, and

the variable is held as small as possible by including its square in the objective function.

The subproblem can be solved by any QP code. NLPQL calls QLD, a modified

version of Powell's convex QP solver ZQPCVX (see [26]), which solves the unconstrained

QP and then successively adds violated constraints until a minimum is reached. NLPQL

assigns 6 = 0 unless QLD returns with an error message due to consistency problems.

3.5.2 Line Search Procedure. The subproblem yields a solution Sk (the search di-

rection) with subproblem multipliers Uk. The next step is to choose a step size ak to give

the new iterate zk+1 and new Lagrange multipliers vk+ . The new iterates are obtained

for suitable ak by the equations

Xk+1 = Xk + aksk

Vk1= Vk + Gie(Uk - Vie).

In order to determine ak such that the next iterate is feasible and represents a signifi-

cant improvement, a merit or penalty function

( Vie)) U
is minimized, where rk = (ri')..., rn)) is the vector of penalty parameters. NLPQL gives

the option of using an L1-exact penalty function

0,(X) = f(X) +Erj I gj(x) + E rj I min(O, gj(z))I
j=1 j=m.+l

or the more efficient L2 augmented Lagrangian function proposed by Schittkowski [33, 34]

,no

~(X, V) =f(X) - (Vjgj(X) _ 0.52g(X))

j=1r J (vjgj(z) - 0.5rjg(X)) if gi(x) vi/r (.)

=+ .5v+/r, otherwise,
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where m' = m + 2n is used to include the design variable bounds as constraints. Schit-

tkowski asserts that the augmented Lagrangian function is superior to the LI-penalty

function because the latter requires known upper bounds on the Lagrange multipliers to

guarantee global convergence. Local superlinear convergence can also be affected (33:841.

Schittkowski shows that Equation (3.3) can improve convergence and prevent cycling if

penalty parameters rk are chosen properly (34:201J.

The line search begins with a = 1, and a is reduced on subsequent iterations until a

stopping condition

Okda) < Ok(O) + pa~&'(O)

is satisfied, where Ok4(0) < 0 must hold [32:11]. To guarantee this convergence, the penalty

parameters (for this algorithm, each constraint has a different parameter) are defined

[34:201] by

= max oj , (1-- ,1T Uj - =1,...,M,

where o(•) = min 1, 7F=)

3.6 Integration of NLPQL and ASTROS

3.6.1 Main Loop Implementation. ASTROS and NLPQL were integrated in the

manner described by Figure 3.2. A special driver program was written to take advantage

of NLPQL's "reverse communication" option, in which the algorithm exits to the driver

each time function or gradient evaluations are required. Since ASTROS cannot be used

as a callable subroutine, the driver program simply exits to the operating system at each

iteration. Because of this, special measures were taken to store the NLPQL data between

iterations.

The driver program has several functions. It uses the ASTROS memory manager

to dynamically allocate array space, and it accesses the current function and gradient

information from the database created by ASTROS at each iteration. It then calls NLPQL

with this data and gets back a new design point to test. The new point may or may not
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be the next current design, since NLPQL's line search procedure may require intermediate

function calls. Using this data, the driver then rewrites the ASTROS input file in the

proper format. A Unix shell was written to control the ASTROS-NLPQL loop. The

source code is provided in Appendix C.

ASTROS is a very complex collection of FORTRAN subroutines controlled by a long

sequence of commands written in the MAPOL computer language. In order to prevent

ASTROS from using its own optimizer during each iteration, changes to the standard

MAPOL sequence were necessary. This was accomplished by inserting the changes into the

ASTROS input file as described in the ASTROS User's Manual [20]. During each iteration,

a call to "EXIT", an ASTROS subroutine, was inserted into the MAPOL sequence prior

to the call to the optimizer. To save computational time, the point at which the exit call

was made was determined by NLPQL. If NLPQL needed function evaluations only, the

call was made prior to ASTROS sensitivity analysis; otherwise, it was made immediately

prior to the optimizer call.

3.6.2 Integrating Active Constraint Flags. Since ASTROS normally optimizes ap-

proximate problems, its method of tracking constraints is quite different from NLPQL. In

the traditional optimization loop, the active set strategy must be very generous in hold-

ing constraints active. Since the error in linearly approximating the constraints can be

unpredictable, a restrictive strategy can yield highly infeasible iterates. The only way to

prevent this is to hold active any constraints whose continued feasibility would be in doubt.

Since, in practice, there is no scientific means of guessing which constraints to hold active,

a generous strategy is typically used.

The constraint deletion procedure in ASTROS forms its working set according to the

values of two parameters, EPS and NRFAC. EPS is similar to the c used in NLPQL's active

set strategy, except that, in ASTROS, the constraints are normalized and of opposite sign:

1 - 1< 0.

NRFAC is a minimum number of active constraints expressed as a factor of the number

of design variables. For example, if there are 30 constraints and 10 design variables, and
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NRFAC = 0.5, then ASTROS would keep, at a minimum, 5 constraints in the active set

at all times.

For the three structures problems tested, NRFAC was set to zero in the alternative

loop in an effort to mimic the NLPQL strategy, and EPS was set at 10-2 (better accuracy

is generally not needed for structures problems). In the ASTROS approach, each problem

used "realistic" values for NRFAC and EPS (generally NRFAC = 1.0, EPS = 10-1).

3. 7 Convergence Criteria

ASTROS and NLPQL nave different convergence criteria. The ASTROS criteria,

which will be denoted "Criteria (Cl)" are given by

Ilfk - fk-1II < .0051 fo I and MCV < 0.01,

where fk, k = 0, 1,... denotes the value of the objective function at the kth iteration and

MCV denotes the maximum constraint violation. Its bound was chosen "realistically", but

tighter bounds are sometimes needed in practice, particularly with respect to flutter and

frequency constraints. The criteria for NLPQL, denoted by "Criteria (C2)", are given by

KTO =1 STVfI + I ujgj(x) 1 _< c and SCV < V/,

where KTO is a measure of the Kuhn-Tucker optimality conditions, SCV denotes the sum

of constraint violations, and E is the error tolerance, chosen to be E = 10-'. Although this

degree of accuracy is rarely needed in practice, it was used to demonstrate the accuracy of

NLPQL.

So as to compare ASTROS and ASTROS-NLPQL properly but still demonstrate

accuracy, it was necessary to run ASTROS-NLPQL to completion using Criteria (C2),

but then manually compare them afterward; i.e., ASTROS-NLPQL was compared against

ASTROS up to the point at which each satisfied Criteria (Cl).
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3.8 Summary

The test problems were run using both the traditional ASTROS loop and the alter-

native ASTROS-NLPQL implementation. Results of this study are reported in the next

chapter.
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IV. Results

4.1 Overview

This chapter presents the results of this study, including solutions to the test problems

and algorithm performance comparisons. Integrity of the driver program and algorithm

implementation was first verified by solving the classic ten-bar truss problem (drawing

shown in Figure 1.2) and comparing the results with known solutions. The test problems

were solved (or attempted) using both the standard (ASTROS) and alternative (ASTROS-

NLPQL) approaches in the manner described in the previous chapter.

Each problem is discussed individually, and comparative plots of weight versus CPU

time and number of iterations are provided. Since gradient evaluations are generally much

more computationally expensive than function evaluations, an iteration for the ASTROS-

NLPQL approach is defined to be a gradient evaluation; that is, each iteration of the

ASTROS-NLPQL loop consists of up to five (set by the driver program, but rarely exceeds

three) function evaluations and one gradient evaluation. A plot of maximum constraint

violation (MCV) versus number of iterations is also included for each problem. A feasible

design is defined as one whose MCV is less than 10'2. Additional supporting data for each

problem is provided in Appendix B.

For each of the tables in this chapter, the following notation is used:

Tr200 = 200-member plane truss

ICW = Intermediate complexity wing

HALE = High-altitude, long-endurance aircraft

F = Objective function value (weight in lbs)

MCV = Maximum constraint violation

CPU = CPU time required (sec)

NITER = Number of iterations required

NFUNC = Number of function evaluations required

NGRAD = Number of gradient evaluations required

NCG = Number of individual gradients computed
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In addition to these conventions, ASTROS-NLPQL (Cl) refers to results when Cri-

teria (Cl) is satisfied for the first time, while ASTROS-NLPQL (C2) refers to final results

within the stricter Criteria (C2).

4.2 200 Member Plane Truss

The results of the Tr200 problem are summarized in Table 4.1. Iteration histories

comparing the two approaches are given in Figures 4.1-4.3. As shown in Table 4.1,

Table 4.1 Tr200 Optimization Results

ASTROS ASTROS-NLPQL (Cl) ASTROS-NLPQL (C2)
F 30000.7 29951.1 28772.3
MCV 0.0 0.004404 0.000001
CPU 879.7 1785.9 13738.9
NFUNC 13 31 196
NGRAD 13 18 150
NCG 2711 670 2076

44000
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42000 ASTROS-NLPQL

40000

- 38000
.0

36000

= 34000 -

32000 /

30000 .

28000
0 200 400 600 800 1000 1200 1400 1600 1800

CPU time (sec)

Figure 4.1 Tr200: Weight vs. CPU time
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Figure 4.2 Tr200: Weight vs. Number of Iterations

ASTROS-NLPQL successfully converged to an optimal design of 28772 pounds. ASTROS

required fewer iterations and function evaluations, while ASTROS-NLPQL computed fewer

individual gradients. ASTROS finished in less time, but ASTROS-NLPQL yielded a lower

feasible weight.

ASTROS-NLPQL was very accurate, but the improvement was computationally

costly. This was expected, since most optimization algorithms exhibit this type of behavior.

However, the improvement is not insignificant. Table 4.2 shows most of the improvement

occurring early, but still a four percent improvement between Criteria (C1) and (C2).

Table 4.2 Tr200: ASTROS-NLPQL Iteration Analysis

Event NGRAD CPU F Improvement
First feasible design 6 478.7 33521
(Cl) reached 18 1785.9 29951 3570 (11%)
(C2) reached 150 13738.9 28772 1179 (4%)
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Figure 4.3 Tr200: MCV vs. Number of Iterations

4.3 Intermediate Complexity Wing

The ICW problem was actually solved twice, with and without scaling of the objec-

tive function. Results of both versions are summarized in Table 4.3, and iteration histories

axe given in Figures 4.4-4.6. As seen in Table 4.3, ASTROS-NLPQL successfully con-

verged to optimal weights of 41.55 and 41.59 pounds for the scaled and unscaled versions,

respectively. Once again, ASTROS required fewer iterations and function evaluations,

while ASTR.OS-NLPQL computed fewer individual gradients. ASTROS finished in less

time, but ASTROS-NLPQL yielded a lower feasible weight.

Unlike the Tr200 problem, the first feasible design of this structure occurred con-

currently with the satisfaction of Criteria (CI). That is, the change in weight between

iterations had already satisfied the convergence tolerance limit. At that point, the scaled

version was much faster than the unscaled version due to the fewer gradient calculations

required.
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Table 4.3 ICW Optimization Results

with scaling
ASTROS ASTROS-NLPQL (Cl) ASTROS-NLPQL (Last)*

F 42.483 41.369 41.551
MCV 0.0002466 0.009025 0.004560
CPU 4434.1 9829.4 15935.7
NFUNC 8 59 95
NGRAD 8 31 48
NCG 2801 1040 1801

without scaling

F 42.483 41.591 41.594
MCV 0.0002466 0.004599 0.003267
CPU 4434.1 24251.6 27319.3
NFUNC 8 56 65
NGRAD 8 34 38
NCG 2801 2348 2505

*Criteria (C2) not reached. Last feasible design is given.

In both cases, ASTROS-NLPQL ended prematurely with a message that it had ex-

ceeded the maximum allowable number of line search iterations. With scaling, a feasible

design satisfying Criteria (Cl) had been reached. In order to solve the unscaled problem

with ASTROS-NLPQL, NLPQL's line search type parameter was changed to force NLPQL

to use the nondifferentiable LI-penalty function given by Equation 3.5.2. This strategy

was recommended by Schittkowski in the opening comments of his source code [36]. The-

oretically, this slows convergence, but it allowed the program to continue (Appropriate

logic was subsequently added to the driver program). ASTROS-NLPQL then proceeded

to a feasible design (satisfying Criteria (Cl)), but once again ended with the same error

message. However, at that point, there was no substantive change in weight at least less

than 5 x 10-4 pounds) between the last two iterations.

The early termination of NLPQL is believed to have occurred for one of two reasons.

The first possibility is that, at that point, the penalty parameters had values that made

convergence to the line search stopping condition too slow to be accomplished within the

allowable number of function calls. The second possibility is a precision problem between

ASTROS and NLPQL. ASTROS stores its design variable data in single precision form,

while NLPQL stores in double precision. When NLPQL rewrites the ASTROS input
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Figure 4.4 ICW: Weight vs. CPU time

file with a new set of design variables, not only does it write in single precision, but it

must also write each record in a set of eight-character fields to remain compatible with

ASTROS. Currently, this is not more accurate than 10-i. Certainly, a combination of

these two reasons is possible, if not likely. That is, by the time the stopping criterion

would have been satisfied, there was already insufficient precision in the process. Full

integration into ASTROS may remedy this problem. This was not considered originally

because such accuracy is almost never needed in structures problems (it is unrealistic from

the manufacturer's viewpoint).

4.4 High-Altitude, Long-Endurance Aircraft

ASTROS could not solve the HALE problem within its available memory. However,

HALE was successfully solved using the ASTROS-NLPQL approach. Results are given in

Table 4.4. Iteration history is given in Figures 4.7, 4.8, and 4.9. Although no comparison

data for ASTROS is given, the final feasible weight of 1601.4 pounds recorded by ASTROS-

NLPQL is 49.2 pounds lower than the previous lowest feasible weight of 1650.6 pounds
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Figure 4.5 ICW: Weight vs. Number of Iterations

recorded by Canfield and Venkayya using an OC approach ([5], [6]). An even lower weight

could have been obtained, had computer resources been available to continue running

the program. During the run of the HALE problem, measurements were periodically

taken with respect to CPU time required for one function evaluation and one gradient

evaluation. Each iteration averaged between 7000-11000 seconds of CPU time. Of that

time one function evaluation required approximately 25-30 seconds. Because there were

Table 4.4 HALE Optimization Results

ASTROS-NLPQL: (Cl) (if)* (Last)**
F 1731.2 1633.0 1518.9 (1601.4)
MCV 0.002037 0.008631 0.054296 (0.0)
CPU (hrs) 60.6 143.8 198.3
NFUNC 66 113 148
NGRAD 42 72 91
NCG 2085 4487 5942

*Criteria (C2) not reached. Last feasible (If) design given.
"**Last design: infeasible (Equivalent feasible design).
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Figure 4.6 ICW: MCV vs. Number of Iterations

no flutter constraints, this was actually less expensive than the 35-45 seconds of CPU time

per function evaluation required by the ICW problem.

4.5 Summary

ASTROS-NLPQL was successful in solving the three structures problems. Perfor-

mance of the two approaches has been compared and some analytic observations made.

The next chapter gives conclusions and recommendations for further research.
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V. Conclusions and Recommendations

5.1 Summary

The purpose of this thesis was to adapt an SQP method with active set strategy to

efficiently solve large-scale structural optimization problems within a multidisciplinary en-

vironment. The literature suggests that SQP methods generally converge faster than other

MP methods, and an efficient active set strategy can reduce the problem size, speeding up

convergence even more.

Schittkowski's NLPQL algorithm was chosen as the optimizer primarily because it

has special logic which could be adapted for structures problems, which often do not have

explicitly defined constraint functions. This feature made NLPQL less cumbersome to

implement than other available codes. It has also been shown to perform very well on

smaller problems relative to other MP methods.

NLPQL was integrated into ASTROS with a different loop structure from what is

currently used. In the normal ASTROS approach, ASTROS computes constraint values

and gradients (for the retained constraints) and optimizes an approximate problem based

on first-order approximations with respect to the reciprocal design variables. Since the ap-

proximate constraints are explicitly defined, it is normally computationally inexpensive to

optimize. Convergence is achieved when the optimal solution to the approximate problem

is feasible and the successive improvement in weight becomes small. The ASTROS-NLPQL

implementation eliminated the approximate problem and used a much tighter tolerance

for holding constraints in the active set. The hypothesis was that the computational cost

of more iterations caused by the elimination of the approximate problem could be offset

by the reduction in the number of gradients computed. In the current ASTROS approach

many constraints are held active in an attempt to avoid highly infeasible designs caused

by optimizing an underconstrained approximate problem. This implementation represents

the first time an SQP method has been employed as the optimizer within the ASTROS

environment.

ASTROS-NLPQL was tested on three large-scale structures problems, one with con-

straints from multiple disciplines. ASTROS-NLPQL successfully solved each within Cri-
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teria (Cl). The Tr200 problem was solved within Criteria (C2). The ICW problem would

probably be solvable to within (C2) if fully integrated into ASTROS. The HALE prob-

lem was stopped early, having exceeded available computer resources, but otherwise would

probably have converged to within Criteria (C2). The results showed, as expected, that

ASTROS-NLPQL generally required more iterations, while ASTROS computed more in-

dividual gradients. ASTROS required less CPU time.

The largest structure tested was the HALE problem. It was solved successfully for

the first time by a direct method within the ASTROS environment. The resulting design is

the lowest feasible design weight of this structure ever computed by ASTROS (specifically

the structure described in Appendix A).

5.2 Conclusions and Observations

This research has demonstrated that NLPQL can be used to solve large-scale struc-

tural optimization problems. It has further shown that a direct method can be used to solve

larger problems than those previously solved by ASTROS. In addition, some conclusions

and observations are offered.

5.2.1 Convergence and Efficiency. The traditional ASTROS approach for solving

large problems proved much more efficient than ASTROS-NLPQL. The more restrictive

constraint retention tolerance could not offset the cost of the additional iterations. Based

on the results, if the memory size within ASTROS could be made large enough to run the

HALE problem, it is likely that ASTROS could solve HALE faster than ASTROS-NLPQL.

Although SQP methods are generally among the fastest MP algorithms, the benefit

of local superlinear convergence of the NLPQL algorithm was found to be overrated for

these large structures problems. In reality, either the neighborhood in which this occurs

is very small, or the sequence of constants, 7k, approaching zero which defines superlinear

convergence does so very slowly (see Equation 2.9). Since large problems often have very

flat regions near minima, convergence can be slow. This appears to be what happened in

the Tr200 problem.
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Although the HALE problem was successfully solved, ASTROS-NLPQL took an

unreasonable amount of time to arrive at a solution. This was caused primarily by limited

computer resources. For much of the time, it required between fifty and eighty percent of

the Convex system memory. In solving very large problems, SQP was discovered to have a

potential drawback: the benefit of superlinear convergence could be negated by the cost of

storing and working with second-order information. As the number of design variables or

constraints increases, the approximate Hessian matrix grows an order of magnitude faster.

For small or moderately-sized problems, this is not as noticeable.

5.2.2 Feasible Designs. Another important observation was that it was easier for

ASTROS to maintain a feasible design. Since ASTROS-NLPQL minimizes a merit func-

tion in determining a step size, the step size is chosen based on improvement in the merit

function. This is an indirect way of measuring feasibility; in other words, NLPQL math-

ematically performs a "tradeoff" during each iteration between feasibility and optimality

based on computed values of the merit function. Because of this, there is no way to di-

rectly control or affect whether an iterate is feasible or not. The results of the HALE

problem d,,monstrated the tradeoff. In fact, the only way to affect convergence at all is by

scaling the objective function before running it (see [35:492] for details). This can dramat-

ically change convergence behavior, but, as observed in the ICW problem, this does not

necessarily mean that feasibility will be attained faster.

In contrast, ASTROS can affect feasibility by controlling the number of constraints

retained for the approximate problem. This was, in fact, observed during the study of

the Tr200 problem. If a great number of constraints are held active and passed to the

approximate problem, the approximate problem becomes overconstrained. Optimization

then yields a design at the next iteration which has a higher probability of being feasible,

but has less improvement. On the other hand, if few constraints are held active, the

optimizer solves an underconstrained approximate problem. The resulting design may

improve the weight greatly, but can frequently be highly infeasible.

5.2.3 Precision. ASTROS-NLPQL has been shown to be capable of accurately

solving large structures problems. Criteria (C2) was deliberately set unrealistically tight
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(E = 10-2). Although this criteria was achieved by only one of three problems, there is no

evidence to show that it would not have occurred, given a more precise implementation

and enough CPU time available.

Such precision is rarely needed in practice. Usually, the optimization process is

allowed to continue only as long as the percent improvement is judged to be worth the

computational cost of additional iterations. This may seem to make the benefit of accuracy

less significant; however, accuracy makes other types of research possible.

For example, most large structures are not optimized using all independent vari-

ables; otnerwise the problems would simply be too large to solve. Instead, variables are

linked together to shrink the problem size. For, say, an aircraft wing, one common linking

scheme is to design the top and bottom surfaces symmetrically; i.e., each design variable

representing a component size on the top surface is forced to have the same value as the

corresponding variable on the bottom surface. This has the effect of imposing additional

constraints on the problem, because it limits the freedom to design all variables indepen-

dently. With the ability to solve larger problems to a greater accuracy, researchers and

designers can determine the cost of linking variables, simply by solving problems with and

without linking and measuring the difference. Judgements can then be made as to whether

it is worth the additional cost to link variables.

5.3 Recommendations for Future Research

In addition to the proposed study of design variable linking costs just described,

there are several other avenues for further investigation and research. These are briefly

discussed.

Improvements within NLPQL. The NLPQL software was structured so that its sub-

routines would be easily replaceable with other available codes. In particular, NLPQL

allows the use of a different line search procedure or quadratic programming solver.

The results of the HALE problem showed that the cost of one gradient evaluation can

be enormous compared to that of a function evaluation. This is often the case in problems

with stress and displacement constraints only (i.e., no aerodynamic constraints). Flutter
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and frequency constraints require more computational effort, but gradient evaluations still

dominate the total computational cost. With this in mind, a more efficient line search

technique within NLPQL could potentially yield a significant savings. By searching along

the line at a few more points, a more improved weight can be achieved at each iteration.

The tradeoff would be a few more function evaluations per iteration, but fewer iterations

or gradient evaluations.

A different quadratic programming solver may also significantly improve computa-

tional performance for large problems. One of the possible improvements may be focused

on dealing with the large matrices. The current QP solver requires the Cholesky decom-

position of V2L.

Extensions to ASTROS-NLPQL Integration. Direct integration of NLPQL into AS-

TROS would provide additional insight into the performance of the NLPQL optimizer.

It involves creating a new driver for NLPQL and modifying the MAPOL sequence (main

program) in ASTROS to call the NLPQL subroutine. This can be done within either the

traditional or alternative loop structure. Traditional loop integration would provide insight

into how NLPQL performs as an optimizer of the approximate problem. For that matter,

other optimizers, such as PBLA, could be used as the optimizer and compared against

NLPQL and ADS. The savings could be become significant for large problems with many

binding constraints at the optimum. This would make the approximate problem larger

and more costly to solve. Alternative loop integration would provide a much more precise

estimate of CPU time required.

Sequential Linear Progiumming. Although SQP methods have faster convergence,

sequential linear programming (SLP) in the alternative loop structure could potentially

improve efficiency. SLP methods solve linear programs to compute search directions rather

than quadratic subproblems. SLP algorithms do not have to store second-order informa-

tion, which becomes expensive for large problems. Also, linear subproblems are typically

cheaper to solve than quadratic problems. Schittkowski also adds that SLP algorithms do

not inherit roundoff error in the approxiinate Hessian matrix often seen in large problems.

He asserts that this is usually brought on by inexact numerical derivatives [32:401. AS-

TROS computes analytical derivatives, but if finite difference estimates, which are based
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on previous function evaluations, are available at much less cost, and SLP methods do

not have the roundoff error that SQP methods would, a computational savings could be

realized. One drawback, however, is that the slower convergence of SLP means more

iterations.

ASTROS Constraint Retention. Perhaps the greatest inefficiency in ASTROS is the

method by which constraints are retained as active. As discussed earlier, ASTROS employs

a generous strategy so that each successive design produced by the optimizer is as close to

feasible as possible. The current defaults for the strategy parameters are NRFAC = 3.0

and EPS = 0.1. Such conservatism is not needed. The effect of changing the parameters

should be studied in greater detail. A more scientific approach, particularly with some

solid theoretical development, could lead to a heuristic for choosing the "best" strategy

parameters.

Hybrid Methods. One of the newest areas of study is hybrid methods, in which more

than one algorithm is used so that each takes advantage of its strength. One proposed

approach would use OC methods to get near an optimum quickly, and then an SQP method

to tighten the accuracy as quickly as possible.

Parallelization. Finally, the development of parallel computer architectures has led to

a vast amount of research in algorithm development. Such research is focused on exploiting

the features of the parallel architecture to increase the speed and efficiency of algorithms.

Parallelization of optimization algorithms such as NLPQL can increase efficiency.
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Appendix A. Description of Test Problems

This chapter gives a brief description of each test problem solved. A finite element

"wire model" and table of design conditions is provided for each.

A.1 200 Member Plane Truss

The first structural problem solved was a 72-node plane truss consisting of 200 steel

elements subject to five loading conditions. A diagram of this structure is given in Figure

A.1, and a more detailed description is given in Table A.1. This problem has 200 design

variables and 2500 stress and displacement limit constraints [6:1040].

A.2 Intermediate Complezity Wing

Figure A.2 shows an intermediate complexity wing with 158 elements and 234 degrees

of freedom. In this problem, composite cover skins are made of graphic epoxy (properties

given in Table A.2). Constraints include stress limits on all membrane elements and wing

tip transverse displacements limits for two independent loading conditions. Also imposed

was a flutter speed limit of 925 knots (corresponds to 0.8 Mach at sea level). The resulting

problem has 350 design variables and 722 constraints [6:1040-10411.

A.3 High-Altitude Long Endurance Aircraft

Figure A.3 shows a finite element model of the right wing of a high-altitude long

endurance (HALE) aircraft consisting of a truss substructure and metallic cover skins.

This 270-ft span aircraft is designed to patrol for several days at 65,000 feet at a speed

of 150-200 knots. Three static loads were applied to an aluminum version of this aircraft,

and stress and wing-tip deflection limits were imposed. The resulting problem has 1527

design variables and 6124 constraints [6:1041].
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Figure A.1 200 Member Plane Truss Model

No. of Nodes No. of Elements No. of DoF's
88 39 Rods 485 Constrained

55 Shear Panels 217 Unconstrained
62 Quadrilateral Membranes 702 Total

2 Triangular Membranes
158 Total

Figure A.2 Intermediate Complexity Wing Model
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Table A.1 200 Member Plane Truss Design Conditions

Material, steel

Modulus of elasticity E = 30 x 106 psi
Weight density 0.283 lb/in.3

Stress limits 30,000 psi
Lower limit on rod areas 0.1 in.2

Displacements on all nodes 0.5 in.
(horizontal, vertical directions)

Number of loading conditions 5
Loading condition 1 1000 lb acting in +X direction

at nodes 1, 6, 15, 20, 29, 34,
43, 48, 57, 62, 71

Loading condition 2 1000 lb acting in -X direction
at nodes 5, 14, 19, 20, 28, 33,
42, 47, 56, 61, 70, 75

Loading condition 3 10,000 lb acting in -Y direction
at nodes 1, 2, 3, 4, 5, 6, 8, 10,
12, 14, 15, 16, 17, 18, 19, 20, 22,
24, ... , 71, 72, 73, 74, 75

Loading condition 4 Loading conditions 1 and 2 together
Loading condition 5 Loading conditions 2 and 3 together
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Table A.2 Intermediate Complexity Wing Design Conditions

Isotropic material, aluminum

Modulus of elasticity E = 30 x 106 psi
Poisson's ratio 0.30
Weight density 0.1 lb/in.3

Tensile stress limit 67,000 psi
Comprehensive stress limit 57,000 psi
Shear stress limit 39,000 psi
Lower limit on thickness

(shear panels) 0.02 in.
Lower limit on rod areas 0.02 in. 2

Orthotropic material, graphite epoxy

Modulus of elasticity E, = 30 x 106 psi
E2 = 1.6 x 106 psi
G12 = 0.65 x 106 psi

Poisson's ratio 0.25
Weight density 0.055 lb/in.3

Stress limits 115,000 psi
Lower limit on plies 0.00525 in.

Behavior constraints

Limit on transverse tip
displacements 10.0 in.

Flutter speed limit 925 knots
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Figure A.3 High-Altitude Long Endurance Aircraft

Table A.3 High-Altitude Long Endurance Aircraft Wing Design Conditions

Material, aluminum

Modulus of elasticity E = 10.5 x 106 psi
Poisson's ratio 0.30
Weight density 0.1 lb/in.3

Stress limits 60,000 psi
Lower limit on thickness

(shear panels) 0.021 in.
Lower limit on rod areas 0.10 in.2

Behavior constraints

Limit on transverse tip
displacements 200.0 in.

Number of loading conditions 4
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Appendix B. Test Problem Iteration Summaries

In support of the results presented in Chapter IV, the underlying data for each

problem is given here in tabular form. Column headings common to all the tables are

defined as follows.

Tr200 = 200 bar truss structure

ICW = Intermediate complexity wing

HALE = High-altitude long endurance aircraft

I = Iteration number

F = Objective function value

MCV = Maximum constraint violation

CPU = Cumulative CPU time elapsed (sec)

NFUNC = Cumulative number of function evaluations

NGRAD = Cumulative number of gradient evaluations

NACT = Number of active (or retained) constraints

Table B.1: Tr200: ASTROS Iteration History

I F MCV CPU NFUNC NGRAD NACT
1 29890.2 1.5454 454.2 1 1 311
2 40018.6 0.5290 487.9 2 2 200
3 42639.3 0.0 516.0 3 3 200
4 35213.7 0.0 547.8 4 4 200
5 32239.1 0.0 580.4 5 5 200
6 31119.2 0.0 615.0 6 6 200
7 30719.2 0.0 651.3 7 7 200
8 30496.2 0.0 689.7 8 8 200
9 30318.7 0.0 730.0 9 9 200

10 30231.1 0.0 772.0 10 10 200
11 30150.4 0.0 815.8 11 11 200
12 30043.7 0.0 863.4 12 12 200
13 30000.7 0.0 879.7 13 13 200

Table B.2: Tr200: ASTROS-NLPQL Iteration History

I F MCV CPU NFUNC NGRAD NACT

1 29890.192 1.545400 102.473 1 1 289
2 30525.377 0.857279 168.954 2 2 166
3 33752.177 0.296509 233.911 3 3 93
4 35488.013 0.059716 307.959 4 4 24
5 34303.776 0.010453 377.166 5 5 7
6 33521.057 0.008921 478.030 7 6 7
7 33159.736 0.008279 581.213 9 7 7
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Table B.2: (continued)

I F MCV CPU NFUNC NGRAD NACT

8 32760.821 0.007644 686.238 11 8 7
9 32343.548 0.007119 800.252 13 9 7

10 31936.528 0.006684 912.195 15 10 7
11 31563.039 0.006308 1022.490 17 11 7
12 31224.840 0.005986 1133.907 19 12 7
13 30923.061 0.005704 1250.573 21 13 7
14 30657.191 0.005449 1361.607 23 14 7
15 30428.247 0.005206 1470.286 25 15 7
16 30237.079 0.004953 1577.472 27 16 7
17 30079.620 0.004685 1682.959 29 17 7
18 29951.053 0.004404 1785.907 31 18 7
19 29846.510 0.004113 1888.131 33 19 7
20 29761.280 0.003818 1990.627 35 20 7
21 29690.816 0.003525 2092.868 37 21 7
22 29631.442 0.003242 2195.229 39 22 7
23 29580.318 0.002973 2297.602 41 23 7
24 29535.368 0.002720 2400.525 43 24 7
25 29495.231 0.002484 2505.591 45 25 7
26 29458.864 0.002265 2610.131 47 26 7
27 29426.320 0.002062 2716.454 49 27 9
28 29398.057 0.001903 2821.656 51 28 9
29 29375.501 0.001745 2927.300 53 29 9
30 29338.735 0.001524 3032.521 55 30 9
31 29284.345 0.001237 3137.684 57 31 9
32 29146.282 0.018594 3217.081 58 32 11
33 29142.519 0.017483 3295.421 59 33 13
34 29106.163 0.016581 3375.475 60 34 13
35 29093.176 0.014795 3482.718 62 35 11
36 29069.331 0.007582 3562.921 63 36 9
37 29048.457 0.010525 3643.943 64 37 9
38 29026.147 0.009212 3724.073 65 38 9
39 29021.481 0.007769 3830.775 67 39 9
40 28995.211 0.008209 3913.592 68 40 11
41 28988.451 0.006608 4021.815 70 41 11
42 28993.303 0.001065 4102.937 71 42 11
43 28953.122 0.007346 4184.648 72 43 11
44 28945.258 0.004248 4266.306 73 44 11
45 28928.561 0.005640 4347.392 74 45 11
46 28920.623 0.002250 4428.083 75 46 11
47 28907.235 0.002708 4508.825 76 47 11
48 28907.971 0.000950 4589.292 77 48 11
49 28907.141 0.000828 4671.132 78 49 11
50 28900.665 0.001618 4752.638 79 50 11
51 28900.119 0.000470 4834.610 80 51 11
52 28898.253 0.000320 4916.639 81 52 11
53 28896.492 0.000459 4998.455 82 53 11
54 28895.703 0.000238 5080.888 83 54 11
55 28895.329 0.000358 5162.561 84 55 11
56 28895.521 0.000049 5244.081 85 56 11
57 28895.015 0.000075 5326.125 86 57 11
58 28894.817 0.000015 5408.354 87 58 11
59 28894.363 0.000033 5490.592 88 59 11
60 28894.104 0.000045 5573.042 89 60 11
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Table B.2: (continued)

I F MCV CPU NFUNC NGRAD NACT

61 28893.751 0.000036 5654.948 90 61 11
62 28893.303 0.000030 5737.385 91 62 11
63 28892.801 0.000037 5820.282 92 63 11
64 28892.225 0.000053 5902.438 93 64 11
65 28891.357 0.000066 5985.119 94 65 11
66 28890.085 0.000086 6067.467 95 66 11
67 28888.748 0.000114 6149.648 96 67 11
68 28887.699 0.000146 6231.844 97 68 11
69 28886.304 0.000214 6313.221 98 69 11
70 28883.815 0.000465 6395.043 99 70 11
71 28879.964 0.001040 6476.848 100 71 11
72 28873.883 0.003451 6560.159 101 72 11
73 28872.142 0.003218 6669.891 103 73 11
74 28869.355 0.003190 6780.511 105 74 11
75 28866.438 0.003150 6891.008 107 75 11
76 28863.532 0.003087 6999.996 109 76 11
77 28860.710 0.003001 7110.051 111 77 11
78 28857.999 0.002893 7219.847 113 78 11
79 28855.198 0.002765 7330.704 115 79 11
80 28852.472 0.002632 7443.620 117 80 11
81 28849.830 0.002496 7554.780 119 81 11
82 28849.580 0.002471 7671.021 122 82 11
83 28847.054 0.002333 7787.203 124 83 11
84 28844.548 0.002192 7909.731 126 84 11
85 28841.297 0.002035 8025.926 128 85 11
86 28837.556 0.001872 8i38.138 130 86 11
87 28833.125 0.001715 8250.422 132 87 11
88 28827.901 0.001721 8364.785 134 88 11
89 28818.383 0.003378 8450.053 135 89 11
90 28817.883 0.000362 8535.869 136 90 11
91 28817.356 0.000189 8622.311 137 91 11
92 28816.517 0.000280 8708.749 138 92 11
93 28815.937 0.000232 8795.591 139 93 11
94 28815.878 0.000084 8882.240 140 94 11
95 28814.853 0.000159 8969.209 141 95 11
96 28814.278 0.000099 9055.440 142 96 11
97 28812.966 0.000217 9143.501 143 97 11
98 28812.303 0.000159 9232.085 144 98 11
99 28811.969 0.000063 9320.134 145 99 11

100 28811.311 0.000072 9407.561 146 100 11
101 28810.742 0.000048 9495.425 147 101 11
102 28809.872 0.000061 9582.294 148 102 11
103 28809.187 0.000067 9669.087 149 103 11
104 28808.651 0.000084 9755.971 150 104 11
105 28808.238 0.000073 9843.407 151 105 11
106 28807.822 0.000041 9929.012 152 106 11
107 28807.156 0.000076 10014.556 153 107 11
108 28806.932 0.000055 10100.100 154 108 11
109 28806.629 0.000035 10186.868 155 109 11
110 28806.109 0.000046 10273.688 156 110 11
111 28805.499 0.000046 10361.221 157 111 11
112 28805.016 0.000052 10447.509 158 112 11
113 28804.774 0.000047 10534.728 159 113 11
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Table B.2: (continued)

I F MCV CPU NFUNC NGRAD NACT

114 28804.650 0.000028 10621.516 160 114 11
115 28804.519 0.000016 10708.163 161 115 11
116 28804.413 0.000012 10794.295 162 116 11
117 28804.370 0.000009 10880.664 163 117 11
118 28804.359 0.000005 10967.497 164 118 11
119 28804.343 0.000002 11053.979 165 119 11
120 28804.323 0.000001 11141.017 166 120 11
121 28804.276 0.000004 11227.554 167 121 11
122 28804.218 0.000002 11314.499 168 122 11
123 28804.136 0.000003 11401.379 169 123 11
124 28804.043 0.000006 11488.469 170 124 11
125 28803.950 0.000009 11575.026 171 125 11
126 28803.834 0.000012 11661.426 172 126 11
127 28803.640 0.000016 11747.438 173 127 11
128 28803.276 0.000022 11834.108 174 128 11
129 28802.665 0.000022 11920.758 175 129 11
130 28801.807 0.000021 12007.399 176 130 11
131 28800.894 0.000048 12093.698 177 131 11
132 28799.979 0.000085 12180.109 178 132 11
133 28798.585 0.000125 12266.813 179 133 11
134 28795.986 0.000213 12353.771 180 134 11
135 28791.728 0.000309 12440.543 181 135 11
136 28786.395 0.000299 12527.532 182 136 11
137 28781.455 0.000289 12615.335 183 137 11
138 28777.596 0.000465 12702.218 184 138 11
139 28775.589 0.000447 12788.570 185 139 11
140 28774.501 0.000228 12875.671 186 140 11
141 28773.277 0.000336 12962.383 187 141 11
142 28773.236 0.000143 13049.531 188 142 11
143 28773.107 0.000078 13136.056 189 143 11
144 28772.447 0.000078 13222.859 190 144 11
145 28772.390 0.000027 13309.557 191 145 11
146 28772.323 0.000016 13395.903 192 146 11
147 28772.357 0.000002 13482.182 193 147 11
148 28772.338 0.000002 13568.188 194 148 11
149 28772.315 0.000001 13653.641 195 149 11
150 28772.306 0.000001 13738.863 196 150 11

Table B.3: ICW: ASTROS Iteration History

I F MCV CPU NFUNC NGRAD NACT]

1 176.326 0.0749721 2356.0 1 1 351
2 91.3046 0.0035798 2595.8 2 2 350
3 69.8715 0.0373328 2940.7 3 3 350
4 53.6372 0.0246809 3131.5 4 4 350
5 46.0499 0.0041803 3556.7 5 5 350
6 43.3006 0.0102377 4049.0 6 6 350
7 42.6345 0.0021453 4393.3 7 7 350
8 42.4831 0.0002466 4434.1 8 8 350
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Table B.4: ICW (scaled): ASTROS-NLPQL Iteration History

I F MCV CPU NFUNC NGRAD NACT
1 176.326 0.074972 291.639 1 1 1
2 139.595 0.058222 529.350 3 2 2
3 117.385 0.047941 774.726 5 3 3
4 102.214 0.113125 1022.676 7 4 5
5 88.472 0.166341 1277.569 9 5 16
6 82.652 0.131279 1535.698 11 6 14
7 77.689 0.116895 1789.719 13 7 13
8 73.406 0.104445 2043.860 15 8 15
9 69.717 0.092003 2300.579 17 9 16

10 66.439 0.082243 2556.200 19 10 18
11 63.579 0.074359 2812.407 21 11 19
12 52.314 0.177490 3078.169 23 12 22
13 48.737 0.104046 3347.011 25 13 23
14 39.633 0.726435 3654.681 26 14 96
15 40.002 0.269707 3957.493 27 15 69
16 39.993 0.242442 4321.719 29 16 63
17 40.128 0.191806 4675.822 31 17 51
18 40.298 0.145579 5032.965 33 18 50
19 41.185 0.097423 5340.059 34 19 48
20 40.882 0.088096 5718.729 36 20 49
21 40.820 0.079782 6143.683 39 21 45
22 40.827 0.077850 6522.221 41 22 41
23 40.839 0.057393 6887.639 43 23 41
24 40.859 0.037710 7258.842 45 24 38
25 40.964 0.028279 7632.488 47 25 37
26 41.141 0.021487 7997.387 49 26 39
27 41.219 0.082091 8362.117 51 27 45
28 41.229 0.087521 8725.266 53 28 43
29 41.258 0.064623 9089.373 55 29 40
30 41.347 0.010361 9462.399 57 30 39
31 41.369 0.009025 9829.388 59 31 39
32 41.392 0.011864 10191.055 61 32 41
33 41.415 0.006352 10554.456 63 33 42
34 41.450 0.008863 10919.897 65 34 45
35 41.482 0.011377 11285.005 67 35 45
36 41.488 0.022204 11659.239 69 36 45
37 41.497 0.017484 12028.468 71 37 46
38 41.509 0.012004 12379.808 73 38 44
39 41.519 0.008640 12743.577 75 39 45
40 41.524 0.003274 13094.158 77 40 45
41 41.529 0.001810 13440.160 79 41 46
42 41.534 0.002202 13786.011 81 42 46
43 41.535 0.003663 14175.080 84 43 46
44 41.538 0.002330 14518.517 86 44 44
45 41.541 0.003340 14910.611 89 45 45
46 41.544 0.004227 15254.171 91 46 45
47 41.548 0.004364 15595.949 93 47 45
48 41.551 0.004560 15935.681 95 48 46
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Table B.5: ICW (unscaled): ASTROS-NLPQL Iteration History

I F MCV CPU NFUNC NGRAD NACT

1 176.326 0.074972 301.649 1 1 1
2 12.977 10.734125 1130.581 2 2 435

3 19.620 3.565411 1991.375 3 3 283

4 25.236 1.598893 2687.145 4 4 200

5 31.770 0.739623 3368,517 5 5 126

6 35.983 0.462907 4062.834 6 6 77

7 38.932 0.458608 4748.065 7 7 60

8 40.987 0.620461 5418.115 8 8 55

9 42.344 0.496422 6092.010 9 9 39

10 43.130 0.213566 6778.817 10 10 37
11 42.949 0.140882 7462.205 11 11 43
12 42.750 0.117465 8182.694 12 12 41
13 42.600 0.081905 8931.231 14 13 42
14 42.508 0.087616 9700.129 16 14 42
15 42.316 0.191833 10371.999 17 15 43
16 42.124 0.110829 11067.904 18 16 46
17 41.862 0.082706 11738.614 19 17 49
18 41.727 0.046709 12447.945 21 18 44
19 41.698 0.031755 13141.380 23 19 45
20 41.680 0.049737 13860.339 25 20 42
21 41.659 0.063721 14574.190 26 21 47
22 41.621 0.035001 15296.253 28 22 45
23 41.621 0.034832 16261.783 34 23 45
24 41.597 0.021561 17005.426 36 24 45
25 41.588 0.055925 17741.150 38 25 45
26 41.587 0.042885 18429.418 40 26 43
27 41.581 0.038715 19158.195 42 27 45
28 41.578 0.033942 19874.486 44 28 44
29 41.579 0.021147 20616.873 46 29 41
30 41.582 0.016146 21361.938 48 30 40
31 41.583 0.017772 22104.818 50 31 40
32 41.586 0.017194 22808.852 52 32 40
33 41.590 0.013049 23560.695 54 33 39
34 41.591 0.004599 24251.572 56 34 39
35 41.591 0.008654 25046.492 59 35 39
36 41.593 0.003695 25800.477 61 36 40
37 41.594 0.003518 26542.926 63 37 39
38 41.594 0.003267 27319.346 65 38 39

Table B.6: HALE: ASTROS-NLPQL Iteration History

I F MCV CPU NFUNC NGRAD NACT

1 3255.981 3.616151 3779.254 1 1 68
2 2790.074 1.600892 7200.729 2 2 59
3 2669.316 1.228016 10735.062 4 3 55
4 2606.707 1.111547 14315.552 6 4 53
5 2539.292 1.005891 18039.311 8 5 48
6 2470.838 0.910062 21939.859 10 6 42
7 2411.810 0.823141 25927.295 12 7 39
8 2362.244 0.744329 29902.691 14 8 39
9 2320.490 0.672897 33935.895 16 9 39

10 2285.157 0.608174 37853.961 18 10 36
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Table B.6: (continued)

I F MCV CPU NFUNC NGRAD NACT

11 2255.130 0.549547 41742.414 20 11 34
12 2229.462 0.496456 45655.289 22 12 30
13 2207.304 0.448398 49555.547 24 13 31
14 2187.975 0.404908 53514.414 26 14 31
15 2158.506 0.338180 57380.086 28 15 30
16 2125.306 0.258464 61246.934 30 16 29
17 2083.680 0.150541 64937.727 32 17 31
18 2033.832 0.800140 68700.352 33 18 64
19 2012.234 0.188608 72349.703 34 19 45
20 1973.680 0.444624 76139.008 35 20 47
21 1929.514 0.343728 79969.609 36 21 35
22 1894.753 0.270401 84036.680 37 22 49
23 1865.296 0.236770 88372.750 38 23 60
24 1839.557 0.281212 92952.438 39 24 59
25 1828.110 0.158032 97931.211 41 25 46
26 1821.233 0.125253 103259.703 43 26 43
27 1815.713 0.105952 109091.898 45 27 41
28 1809.732 0.088458 115067.109 47 28 41
29 1803.067 0.070089 121450.156 49 29 41
30 1797.227 0.055588 127815.711 51 30 44
31 1791.532 0.042748 134343.281 53 31 44
32 1785.466 0.064621 141007.016 55 32 46
33 1777.983 0.036153 147787.031 57 33 49
34 1765.082 0.238837 154785.969 58 34 71
35 1761.364 0.031342 161700.312 59 35 68
36 1754.417 0.011728 168758.234 60 36 68
37 1746.482 0.017811 176345.828 61 37 64
38 1743.126 0.035493 184128.609 62 38 69
39 1739.437 0.099594 192326.031 63 39 69
40 1735.731 0.078152 200541.484 64 40 75
41 1733.671 0.013927 209195.984 65 41 81
42 1731.204 0.002037 218109.844 66 42 72
43 1728.450 0.004013 227074.234 67 43 77
44 1725.550 0.092404 236058.562 68 44 82
45 1722.779 0.011033 245225.266 69 45 81
46 1720.082 0.009193 254460172 70 46 82
47 1717.360 0.007304 263861.000 71 47 81
48 1713.349 0.008837 273281.062 72 48 84
49 1709.689 0.005778 282910.344 73 49 87
50 1704.703 0.004082 292367.781 74 50 80
51 1700.296 0.060179 301912.594 75 51 81
52 1695.990 0.005372 311680.656 76 52 77
53 1690.252 0.023970 321593.750 77 53 82
54 1681.699 0.017465 331599.875 78 54 79
55 1675.253 0.016274 341521.688 79 55 79
56 1674.543 0.014665 351506.156 81 56 79
57 1672.870 0.013507 361706.969 83 57 77
58 1670.712 0.012039 371887.156 85 58 77
59 1668.187 0.010740 382106.375 87 59 78
60 1665.894 0.009528 392419.000 89 60 76
61 1663.717 0.008403 402795.875 91 61 79
62 1661.001 0.007409 413175.750 93 62 80
63 1658.039 0.006232 423503.188 95 63 82
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Table B.6: (continued)

I F MCV CPU NFUNC NGRAD NACT

64 1655.723 0.005512 433818.688 97 64 83
65 1653.465 0.002592 444165.875 99 65 81
66 1651.183 0.002366 454676.562 101 66 81
67 1648.746 0.002142 465131.219 103 67 79
68 1646.039 0.002042 475678.469 105 68 79
69 1643.017 0.001935 486301.781 107 69 78
70 1639.923 0.002157 496884.812 109 70 79
71 1636.712 0.002710 507416.969 111 71 79
72 1633.146 0.008631 517663.562 113 72 83
73 1593.084 1.325360 528171.562 114 73 126
74 1587.990 0.655727 538380.312 115 74 110
75 1582.243 0.198173 548607.500 116 75 87
76 1575.541 0.137358 558951.625 118 76 80
77 1571.832 0.124146 569481.812 120 77 78
78 1566.539 0.112205 579700.750 122 78 73
79 1560.427 0.100104 589924.875 124 79 72
80 1554.297 0.086229 600195.062 126 80 66
81 1547.530 0.073722 610376.125 128 81 64
82 1543.036 0.065304 620529.438 130 82 64
83 1537.696 0.065919 630827.312 132 83 68
84 1531.592 0.125743 641085.688 134 84 67
85 1527.855 0.102366 651383.000 136 85 71
86 1526.088 0.091200 661599.875 138 86 69
87 1524.513 0.082344 671954.500 140 87 70
88 1523.005 0.074261 682487.000 142 88 71
89 1521.581 0.066853 692982.562 144 89 71
90 1520.211 0.060287 703369.188 146 90 74
91 1518.914 0.054296 713754.875 148 91 74
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Appendix C. Source Code

Source code for this research consists of a Unix shell, sqpast.csh, to control the opti-

mization loop and the driver for Shittkowski's NLPQL code, em sqpast.f. It was compiled

on a Convex Unix-based system at Wright Aeronautical Laboratories. The source code for

the NLPQL subroutine is omitted at the request of its author.

C.1 Optimization Loop Control

V /bin/csh
set zero = 110os
set ext -=.inc''

set rext = ".rat"
set pfile - "sqpast.dat"
set pext = ".inp"
set lext = ".log"
set oext = ,.out,
set text = ,,.tim"

set probname = Sargv[1]
if (-e $probname$lext) rm $probname$lext
if (-e $probname$oext) rm $probname$oext
if (-e $probname$rext) rm $probname$rext
if (-e $probname$text) rm $probname$text
if (-e $pfile) rm $pfile
if (-e sqpast.ed) rm sqpast.ed
cp $probname$zero$ext $probname$ext

echo " "

echo "Working problem: $probname"
echo " 2 0 $probname" > $pfile
echo "0.0" > sqpast.clk

set control = ('head -1 sqpast.dat')
set ci = $control[l]
set c2 = $control[2]

while ($cl < '3' II $c2 < '0')
if ($c2 == '-1') then

echo "REPLACE 1254" > sqpast.ed
else

echo "REPLACE 1791, 1793" > sqpast.ed
endif
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astros Sprobname~pext

uqpast.exe
let control a ('head -1 $pfile')
set cl - $control[l]
set c2 - $control[2]

echo "ifail = $c2"
end
#.m $probname$rext $pfile sqpast.ed sqpast.clk

C.2 NLPQL Driver

C****ess***e*********e*s****** * SQPAST.F
C This program is a driver for Schittkowski's NLPQL sequential
C quadratic programming algorithm. It was created to interface
C with the ASTROS (Automated STRuctural Optimization System)
C software to solve structural optimization problems. In order to
C run, it must be compiled with astros.a, the ASTROS library (which
C contains the database and dynamic memory manager) and the NLPQL
C object code, nlpqld.o and qld.o. ASTROS and this program are run
C sequentially within a Unix loop shell structure, sqpast.csh.
C This is necessary for data file compatibility.
C
C AUTHOR: Capt Mark A. Abramson, AFIT/ENS, GOR-94M, 31-JAN-94

IMPLICIT DOUBLE PRECISION(A-H,O-Z)
INTEGER M, ME, N, MKAX, NMAX, MNN2, MAXFUN, MAXIT, IPRINT, MODE
INTEGER IOUT, IFAIL, LWA, LKWA, LACTIV, ISTAT, MSIZE, RSIZE
INTEGER IX, IDX, IXU, IXL, IDF, IG, IDG, IU, IC, ID, IVA
INTEGER IKWA, IACTIV, ICON, ITEMP, IACT, INFO(20), NACT
DOUBLE PRECISION EPS, ACC, SCBOU, F, CV, MAXCV
REAL CPU, CPUSQP, CPUAST, CPUOLD, CPU1, CPU2
CHARACTER*12 INCNAME, LOGNAME, RSTNAME, TIMNAHE
CHARACTER*8 PROB, PROB1, ETYPE, LABEL, CTEMP1, CTEMP2
CHARACTER*8 CSLIST(4), CSTYPE(4)
LOGICAL MOVE, FSCALE

C
C Dynamic memory allocation: All data arrays stored in CORE
C

DOUBLE PRECISION DCORE(1)
REAL CORE(1)
INTEGER ICORE(1)
LOGICAL LCORE(1)

C
EXTERNAL DBBD
EXTERNAL X) ID
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EQUIVALENCE (CORE, ICORE, DCORE,LCORE)
COMMON/MEMLEN/LUGTH
COMMON/CMACHE/EPS
DATA CSLIST/'BCID' ,'SCNUM , 'CTYPE , 'PNUM'/
DATA CSTYPE/'ASC','ASC','ASC','ASC'/

C
C Initialize and assign appropriate problem and f ile names
C

CALL MMINIT(LENGT1I)
CALL MMBASE(CORE)
OPEN(1,FILE='sqpast.dat', STATUS-'OLD', FORM'IFORMATTED')
READ(1,'(215,2XA8)9) MODE, IFAIL, PROB
CLOSEWi
MOVE - .TRUE.
IF (IFAIL .EQ. -1) MOVE - .FALSE.
CALL TIMING(IFAIL, CPUAST, CPUOLD)
L =INDEX(PROB,' ') - I
IF (L .LE. 0) L a 8
INCNANE - PROB(l:L)II'.inc'
LOGNAME - PROB(1:L)//'.log'
RSTNAKE = PROB(1:L)//'.rst'
TIMNAME =PROB(l:L)/II.tim'

C
C Open and sort constraint database, get required memory
C

PROBI= PROB
CALL DBINITCPROB1,'GORGAM' ,'OLD' ,'R/W',' 3)
CALL DBEXIS('&SORTNEW', IDBEX, IDETYP)
IF CIDEEX .EQ. 1 .AND. IDBTYP .EQ. 1) CALL DBDEST('&SORTNEW')

C
CALL RESORTCCONSTI, 4, CSTYPE, CSLIST, CORE)
CALL DBOPEN( 'CONST' ,INFO, 'RO' , NOFLUSH' ,ISTAT)
IF (ISTAT .NE. 0) CALL ERRWi
M INFO(3
MMAX = M + 1
ME = 0

C
CALL MMGETB('CON', 'RSP', MMAX + N, 'NLPQL', ICON, ISTAT)
IF (ISTAT .NE. 0) CALL ERR(2)
IACT = ICON + MMAX

C
C Retrieve ASTROS constraint data (values, and flag if active)
C

CALL RECOND('CONST', ICTYPE', 'GT', 5)
CALL REENDC
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CALL REPROJQ'CONST', 1, 'CVAL')
CALL REGB('CONST', CORE(ICON), NAERO, ISTAT)

C
CALL RECONDQPCOIST', 'CTYPE', 'ILE', 5)
CALL REENDC
CALL REPROJ('COIST', 1, 'CYAL')
CALL REGB('CONST', CORE(ICON+NAERO), NSTAT, ISTAT)
IF (ISTAT .NE. 0) CALL ERR(3

C
CALL RECOND('CONSTP, 'CTYPE', POT', 6)
CALL REENDC
CALL REPROJ('CONST', 1, 'ACTYFLAG')
CALL REGB(QCONST', ICORE(IACT), NAERO, ISTAT)

C
CALL RECOND(ICONST' ', CTYPE', ILE', S)
CALL REENDC
CALL REPROJ(CONST', 1, 'ACTVFLAG')
CALL REGB(C'CONST, ICORE(IACT.NAERO), NSTAT, ISTAT)
IF (ISTAT .NE. 0) CALL EFIR(4)
CALL DBCLOS( 'COIST')

C
CALL MNGETB('G', 'RDP', HNAX, 'NLPQL', IG, ISTAT)
IF (ISTAT .NE. 0) CALL ERR(S)

C
C Convert constraint values to real*8 and active flag to 0-1.
C

NACT =0

MAXCV - .ODO
DO 10 I = 1, 14

DCORE(IG + I - 1) =-1.ODO*DBLE(CORE(ICON +I - 1)
IF (ICURE(IACT +' I1 1) .NE. 1) ICORECIACT + I - 1) a 0
IF (ICORE(IACT + 1 1) .EQ. 1) NACT = NACT + 1
CV = DCORE(IG + 1 1)
IF ((CV.LT.0.ODO) .AND. (DABS(CV) .GT.M4AXCV)) MAXCV=DABS(CV)

10 CONTINUE
C
C Open the design variable database, get required memory
C

CALL DBOPEN( 'GLEDES' ,INFO, 'RO' ,'NOFLUSH , ISTAT)
IF (ISTAT .NE. 0) CALL ERR(6)
N = INFO(3)
NKAX = V + 1
IF (NMAX .LT. 2) NNAX = 2

C
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CALL NMGETB('X', 'ISP', 1001 + NIAX, 'NLPQLI, IX, ISTAT)
IF (ISTAT .ME. 0) CALL ERR(7
IXL m IX + N
IXU = IXL + N
IDVID - IXU + N
IEID a IDVID + N
IETYPE = IEID + N
ILNUM a IETYPE + 2*1
ILBL isILIUM + N
IDF = ILEL + 2*N

C
C Retrieve ASTROS design variable data (values, bounds. etc.)
C

CALL REPROJ('GLBDES', 1, 'VALUE')
CALL REGB('GLBDES', CORE(IX), N, ISTAT)
IF (ISTAT .NE. 0) CALL ERR(8)
CALL RECLRC( 'GLBDES')

C
CALL REPROJ('GLBDES', 1, 'VMIN')
CALL REGB('GLBDES', CORE(IXL), N, ISTAT)
IF (ISTAT .ME. 0) CALL ERR(9)
CALL RECLRC( 'GLEDES')

C
CALL YtEPRDJC'GLBDES', 1, 'VMAX')
CALL REGB('GLBDES', CORE(IXU), N. ISTAT)
IF (ISTAT .NE. 0) CALL ERRC1O)
CALL RECLRC('GLBDES')

C
CALL REPRDJ('GLBDES', 1, 'DVID')
CALL REGB('GLBDES', ICORE(IDVID), N, ISTAT)
IF (ISTAT .NE. 0) CALL EARR(i)
CALL RECLRC( 'GLBDES')

C
CALL REPROJ(IGLBDES', 1, 'EID')
CALL REGB('GLBDES', ICORE(IEID), N, ISTAT)
IF (ISTAT NME. 0) CALL ERR(12)
CALL RECLRC('GLBDESI)

C
CALL REPROJ('GLBDES', 1, 'ETYPE')
CALL REGB('GLBDES', ICORECIETYPE), N, ISTAT)
IF (ISTAT .ME. 0) CALL ERR(13)
CALL RECLRC( 'GLBDES')

C
CALL REPROJC'GLBDES', 1, 'LAYRNUK')
CALL REGB('GLBDES', ICORECILNUM), N, 1ST'
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IF (ISTAT .ME. 0) CALL ERR(14)
CALL RECLRC( 'GLBDES')

C
CALL REPROJ('GLBDES', 1, 'LABEL')

CALL REGB('GLBDES', ICORE(ILBL), N, ISTAT)

IF (ISTAT .NE. 0) CALL ERR(15)
CALL RECLRC( 'GLBDES')

C
CALL REPROJ('GLBDES', 1, 'DOBJ')
CALL REGB('GLBDES', ICORE(IDF), N, ISTAT)

IF (ISTAT .ME. 0) CALL ERR(16)
CALL RECLRC( 'GLBDES')

C
C Convert variable values, bounds, and objective gradient to real*8

C
CALL MMGETB('DX', 'RDP', 3*N+NMAX, 'NLPQL', IDX, ISTAT)
IF (ISTAT .NE. 0) CALL ERR(17)
IDXL = IDX + N
IDXU a IDX + N*2
IDDF = IDX + N*3
DO 20 I - 1, N

DCORE(IDX + I - 1) = DBLE(CORE(IX + I - 1))
DCORE(IDXL + I - 1) - DBLE(CORE(IXL + I - 1))
DCORE(IDXU + I - 1) = DBLE(CORE(IXU + I - 1))
DCORE(IDDF + I - 1) = DBLE(CORE(IDF + I - 1))

20 CONTINUE
CALL DBCLOS ( 'GLBDES')

C
C Calculate current objective function value
C

F = O.ODO
DO 30 I = 1, N

F = F + DCORE(IDX + I - 1)*DCORE(IDDF + I - 1)
30 CONTINUE

C
C Define NLPQL parameters and memory sizes
C

EPS = 1.0D-12
ACC = I.OD-2
MAXIT = 200
MAXFUN = 5
IPRINT = 2

lOUT = 3
C

MNN2 = M + N + N + 2
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LWA a NKAXSU+4*KNAI+4*M,18*N,5S + 3*NKAX*NNAX/2.1O*M+2*M.10
LKWA = N + N 4 N + 19
LACTIV u2*IOIAX + 15
MSIZE NUN2 + NMAI*NMAX + INAX + LWA
RSIZE a8*(2 + MSIZE + NKAX*NKAX) + 4*LKVA + 2*LACTIV + 1

C
C Allocate and initialize exact memory required by NLPQL
C

CALL NMGETB('U', 'RDP', MSIZE, 'NLPQL', IU, ISTAT)
IF (ISTAT .ME. 0) CALL ERR(18)
IC =IU + MNN2
ID =IC + NMAX*NNAX
IWA = ID + INAX

C
CALL MMGETB('TENP', 'RDP', N, 'NLPQL', ITEMP. ISTAT)
IF (ISTAT .ME. 0) CALL ERR(21)
CALL NMGETB('DG', 'RDP', MWA*MNAX, 'NLPQL', IDG, ISTAT)
IF (ISTAT .NE. 0) CALL ERR(22)

C
CALL MMGETB('KWA', 'RSP', LKWA, 'NLPQL', IKWA, ISTAT)
IF (ISTAT .ME. 0) CALL ERR(19)
CALL MMGETB('ACTIVE', 'RSP', LACTIVI NLPQL', IACTIV, ISTAT)
IF (ISTAT .ME. 0) CALL ERR(20)

C
C Read data (including constraint gradient data) from restart file
C

OPEN (99 * FILE=RSTNANE, STATUS='OLD', FORMS' UNFORMATTED',
+ RECL=RSIZE, ERR=998)
READ(99) DCORE(IDDF + NMkAX), DCORE(IG + PMMA),

+ (DCORE(IU + I - 1), I = 1, HSIZE),
+ (DCORE(IDG + I - 1), I = 1, NNAX*NNAX),
+ (CORE(IKWA + I - 1), I = 1, LKWA),
+ (LCORE(IACTIV + I - 1), I 1, LACTIV)
CLOSE (99)
SCBOU` = -1
GOTO 999

998 DO 60 I = 1, LKWA
ICORE(IKWA + I - 1) =0

60 CONTINUE
DO 61 I = 1, NNAX*NKAX

DCORE(IDG + I - 1) =O.ODO
61 CONTINUE

SCBOU = 1.OD+3
C
C Retrieve matrix of active constraint gradients
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C
999 IF ((IFAIL .NE. -1) .AND. (NACT .GT. 0)) THEN

CALL DBOPEN('AMAT',INFO, 'ftO','IOFLUSH',ISTAT)
IF (ISTAT .NE. 0) CALL ERR(23)
DO 60 I a 1, K

IF (ICORE(IACTeI-1) .EQ. 1) THEN
CALL MXUNP('AMAT' ,DCORECITEMP) ,I N)
DO 40 J a 1, N

DCORE(IDG+IEMAX*(J-1)+(I-1)) - -DCORE(ITENP+J-1)
40 CONTINUE

ENDIF
s0 CONTINUE

CALL DBCLOS('AMAT')
ENDIF

C
C Convert active constraint flags to logical for NLPQL1
C

DO 66 I a 1, M

LCORE(IACTIV.I-1) a .FALSE.
IF (ICORE(IACT4.I-1).EQ.1) LCORE(IACTIV4'I-i) a .TRUE.

66 CONTINUE
C
C Call the NLPQL optimizer, getting new design point
C

OPEN(IOUT, FILE=LOGNANE, STATUS='UNKNOWN', ACCESSm'APPEND',
+ FORM-'FORMt&TTED')

CALL XXCPU(CPUi)
CALL NLPQL1(M. ME, MMAX, N, NMAX, MNN2, DCORE(IDX), F,

"+ DCORE(IG), DCORECIDDF), DCORE(IDG), DCORE(IU), DCORE(IDXL),
"* DCORE(IDXU), DCORE(IC), DOORECID), ACC, SCEOU, NAXFTJN,
"+ MAXIT, IPRINT, MODE, IOUT, IFAIL, DCORE(IWA), LWA,
"+ ICORE(IKWA), LKWA, LCORE(IACTIV), LACTIV, .TRUE., .TRUE.)
CALL XXCPU(CPU2)
CLOSECIOUT)
CPUSQP = CPU2 - CPUI

C
C Convert new design variables back to single precision
C

DO 70 1 a 1, N
CORECIX + I - 1) = SNGL(DCORE(IDX + I - 0))

70 CONTINUE
C
C Create new ASTROS .inc file to be included in ASTROS input file
C

OPEN (9, FILExINCNANE, STATUS- 'UNKNOWN', FORN= 'FORMATTED')
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DO 90 1 1, N
II *I- 1
CALL DBMDHC(ICORE(IETYPE.2*II) ,ETYPE,8)
CALL DBMDHC(ICORE(ILBL+2*II) ,LABEL,8)
WRITE(9,8) ICORECIDVID + II), ICORE(IEID + II), ETYPE,

+ CORE(IXL + II), CORE(IXU + II), CORE(IX + II).
+ ICORE(ILNUM + II), LABEL
8 FORMAT('DESELM ',218,A8,F8.6,F8.2,F8.6,I8,A8)

90 CONTINUE
CLOSE(S

C
C Save pertinent data to files and terminate
C

NODE = 13
OPEN(1,ILEu'aqpast.dat', STATUS-'OLD', FOR-I'FORMATTED')
WRITE(1'1(2I5,2XA8)') MODE, IFAIL, PROB
CLOSE( 1

C
OPEN(99, FILE-RSTNAME, STATUS-'UNKNOWN', FORM='UNFORMATTED',
+ RECL-RSIZE)

WRITE(99) DCORE(IDDF + NMAX), DCORE(IG + MMAX),
+ (DCORE(IU + I - 1), I - 1, NSIZE),
+ (DCORE(IDG + I - 1), I a t, MMAX*NMAX),
+ (CORE(IKWA + I - 1), I a 1, LKWA),
+ (LCORE(IACTIV + I - 1), I = 1, LACTIV)

CLOSE(99)
C

CPU = CPUOLD +CPUAST + CPUSQP
OPEN(21, FILE='sqpast .clk', STATUS='OLD', FORM=IFORMATTED')
WRITE(21,'(F11.3)') CPU
CLOSE(21)

C
IF (MOVE) THEN

OPEN(il, FILE=TIMNAME, STATUS='UNKNOWN', ACCESS= 'APPEND',
+ FORN='FORMATTED')

FSCALE =LCORE(IACTIV + 2*MMAX + 6)
IF (IFAIL .NE. 0 .AND. FSCALE) F = F/DCORE(IWA + MMAX)

+ F, MAXCV, CPU, ICORECIKWA), ICORE(IKWA.1), NACT
ENDIF

C
STOP
END

C
C
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C *e*e*~e***e.***SUBROUTINES *~e****e*s.e
C
C This subroutine computes previous ASTROS CPU time.

C
SUBROUTINE TIKING(IFAIL, AST, OLD)

REAL AST. SS(2)
INTEGER MODE, IFAIL, HH(2), MM(2)

CHARACTER*26 TEMP, TFLAG

OPEN(21, FILE-'sqpast.clk', STATUSw&OLD', FORN,'FORNATTED')
READ(21,'(Fl1.3)') OLD
CLOSE(21)

C
OPEN(22, FILE='fort .98', STATUS-'UNKNOWN', FORN='FORIATTED')
TFLAG - '*** BEGIN ASTROS ***

IF (IFAIL .EQ. -1) TFLAG = 'BEGIN OPTIMIZATION
IF (IFAIL .EQ. -2) TFLAG = ' *** NAKDFV BEGIN'
DO 100 I a 1, 1000

READ(22,11) TEMP
IF (TEMP .EQ. TFLAG) GOTO 101

100 CONTINUE
101 BACKSPACE 22

READ(22,10) HH(1),MM(1),SS(1)
C

DO 200 I = 1, 1000
READ(22,11) TEMP
IF (TEMP .EQ. ' *** EXIT BEGIN') GOTO 201

200 CONTINUE
201 BACKSPACE 22

READ(22,10) HH(2) ,MM(2) ,SS(2)
CLOSE(22)
AST = (3600*HH(2)+60*MM(2)+SS(2))-(3600*HH(1)+60*MM(1)+SS(1))

C
10 FORMAT(T11, 2(I2,1X),F4.1)
11 FORMAT(T22, A26)

RETURN
END

C
C This subroutine tracks database access errors
C

SUBROUTINE ERR(K)
INTEGER K, NCORE
CALL MMSTAT(NCORE)
PRINT *, 'DB ACCESS ERROR # ', K, ' --

+ NCORE, 'RSP WORDS LEFT'
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STOP
END

C
C These subroutines, used for explicitly defined functions, are

C empty for structural applications.

C
SUBROUTINE NLFUNC(M,ME,NNAX ,1 ,FG , X ,ACTIVE)

RETURN
END

C
SUBROUTINE NLGRAD(M,ME,NMAX,N,F,G,DF,DG,X,ACTIVE,WA)
RETURN
END
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